APPENDIX B

HEALTH RISK ASSESSMENT

Risk Assessment Calculations 2003 Modifications Application Polychemie Inc. - Los Angeles, CA GESI Project No. 02512.01

Compliance with Rules 1401 and 212

Since there are multiple sources, ISCST3 modeling was used to estimate ambient impacts.

Model protocol was per instructions of SCAQMD. Met data was obtained from the SCAQMD website for the closest station located in downtown Los Angeles.

Model receptors were located along the facility's property line at 25 meter intervals and using a Cartesian coordinate system for off-site receptors. The Cartesian coordinate off-site receptors were placed at 25 meter grid intervals from the property line to approximately 1,000 meters from the center of the facility.

Since modeling was used, a modified Tier II assessment procedure from SCAQMD "Risk Assessment Procedure for Rules 1401 and 212" guidance book was followed to demonstrate compliance with Rules 1401 and 212:

- Total acute hazard index (HAI) < 1.0 for any target organ.

- Total maximum individual cancer risk (MICR) <1.0 E-6

Emission Rates

For modeling purposes, emission calculations are based on post-1990 production increases and permitted formaldehyde limits. Formaldehyde emission rates from SC1 and SC2 are based on permit limits. Acrylamide emission rates and the formaldehyde emission rate for SC3 (new scrubber) are calculated. The calculations reflect the new process lines and the increased Mannich production of 300 MM pounds minus the pre-1990 Mannich production of 110 MM pounds. Therefore, the post-1990 emission calculations are based on 190 MM pounds of Mannich production and the new processes. Since standing/breathing losses from formaldehyde tank V3 and acrylamide tank V4 are pre-1990, they are not included with the post-1990 emissions. Also, throughputs for tanks V3 and V4 have been included with the new tank (V10 and V16) calculations. See the attached modeling emission calculations.

Formaldehyde maximum hourly emissions (for HIA estimation)

Although annual throughput will increase for equipment venting to scrubber SC1, there will be no change in maximum hourly emissions since the mode of operation has not changed since 1990. Furthermore, since these same maximum hourly emissions were permitted pre-1990, they shall be excluded from modeling. Maximum hourly emissions to SC2 will be modeled at the current permit limit. Maximum hourly emissions to SC3 would occur during the filling of the formaldehyde storage tank. See calculations below.

For V16 (to SC3) As a conservative estimate, assume a maximum fill rate of 10,000 gallons per hour. Uncontrolled emissions = 0.0010 MV PVA (Q/42) [from AP 42] Formaldehyde tank emis. = 0.0010 (30.03) (0.01547psi) ((10,000 gal)/42) = 0.11061 lb/hr uncontrolled

Maximum hou	rly emission	ns by sou	rce (post 1990) are:		
SC2 = pe	rmit limit	8	96 	6.1000E-03	lb/hr
SC3 = fil	ling tank		=	0.11061	lb/hr
Fugitive =	35.22	lb/yr	/8760 hr/yr =	0.00402	lb/hr
		014 2 20 4 291 21	Total =	0.12073	lb/hr

* No HAI evaluation is required for acrylamide since there is no acute or chronic REL. Therefore, maximum hourly emissions do not need to be estimated for acrylamide.

Risk Assessment - 2003 Modifications Polychemie, Inc. - Los Angeles, California GESI Project No. 02512.01

Modeling (MICR) and Chronic HIA

Acrylamide

Only actylamide emissions permitted after 1990 are to be modeled (see modeling calculations). Average annual lb/hr:

SC1 =	0.00762	lb/yr	/8760 hr/yr =	8.6972E-07 lb/hr
SC2 =	0.02133	lb/yr	/8760 hr/yr =	2.4352E-06 lb/hr
SC3 =	0.08774	lb/yr	/8760 hr/yr	1.0016E-05 lb/hr

Formaldehyde

Only formaldehyde emissions permitted after 1990 are modeled for SC3 (see modeling calculations).

Formaldehyde emission rates for SC1 and SC2 are based on permit limits. SC1 emissions are based on estimated annual average daily emissions at 160 MM pounds of Mannich (proposed increased production) minus the pre-1990 permitted limit of 0.034 lb/day (see attached hand written calculations on next page). SC2 is currently limited to 0.0061 lb/hr and this value is used for modeling. SC3 emissions are based on emission calculations.

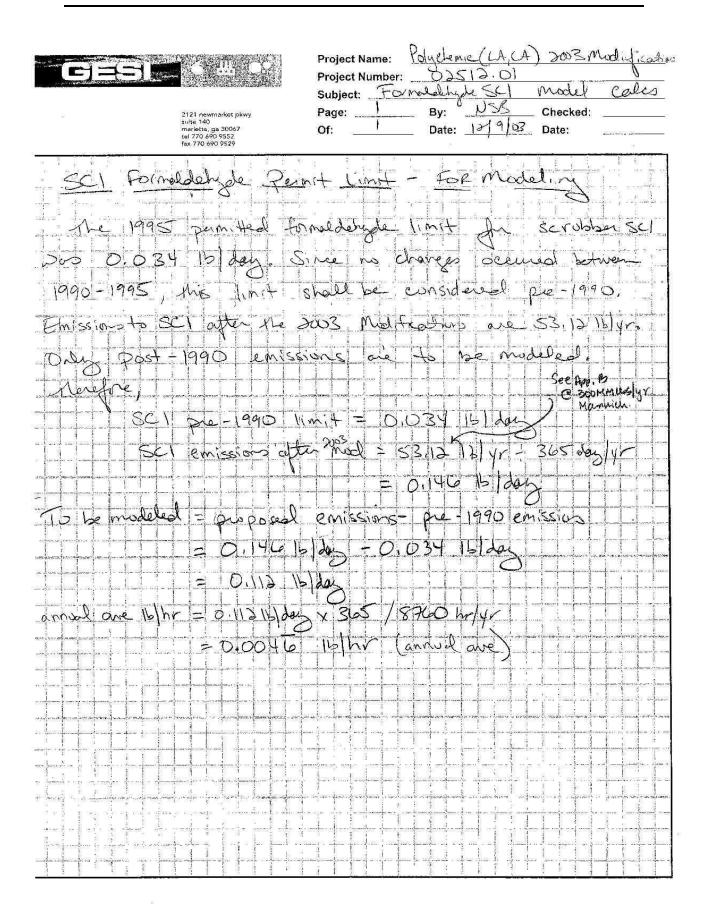
Average annual lb/hr:

SCI = property = 1	oposed emi	ssion rate	e (0.146 lb/day) - pre	1990 permit limt (0.034 lb/day)
SC1 = 0.	112 lb/day	x 365 / 8	760 hrs/yr =	4.6667E-03 lb/hr
SC2 = pc	rmit limit		₩	6.1000E-03 lb/hr
SC3 =	5.13	lb/yr	/8760 hr/yr =	5.8530E-04 lb/hr
Fugitives=	35.22	lb/yr	/8760 hr/yr =	4.0209E-03 lb/hr

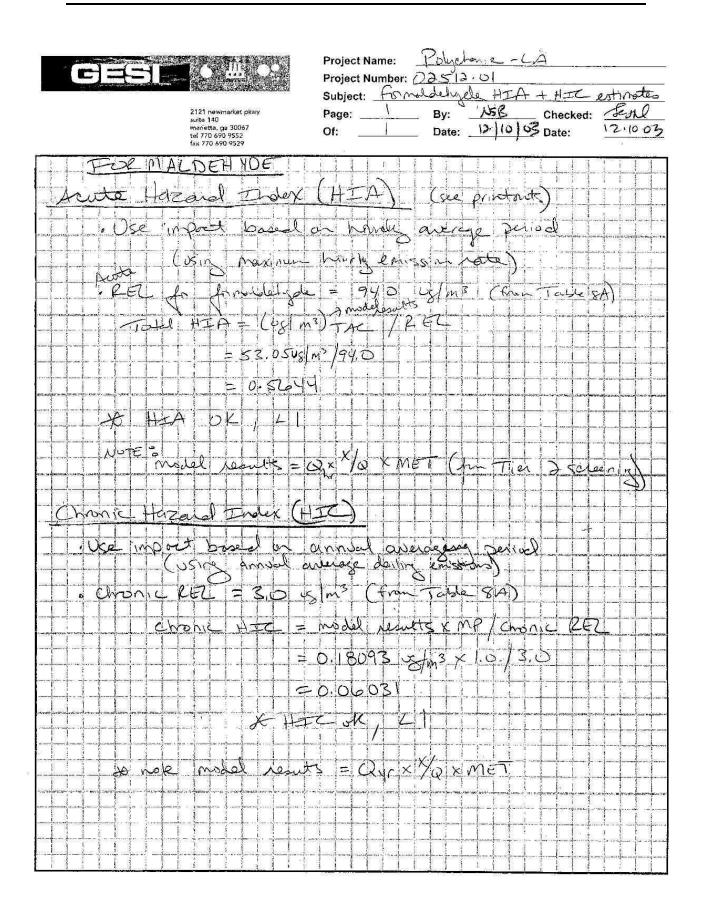
<u>Modeling Results</u>- see attached data Highest impacts are at fence line- to be used for off-site worker exposure.

At Max Hourly Rate	2:		
	Formaldehyde =	53.05	ug/m3
At Annual Hourly R	late:		2-**
	Formaldehyde =	0.18093	ug/m3
	Acrylamide =	0.00027	ug/m3

Since residential/sensitive receptors are located much further away than off-site workers, it is appropriate to use modeling result at distance further than the fence-line concentrations presented above.


The closest residential/sensitive receptors are located ~500 meters from the northern fence line and ~600 meters from the eastern fence line. Residential/sensitive receptors are located greater than 600 meters away from the southern and western fence lines. Therefore, the highest concentrations at ~500 meters from the site will be used.

At Annual Hourly Rate:


Formaldehyde =	0.01594 ug/m3	
Acrylamide =	0.00002 ug/m3	

By: <u>NSB 12/10/2003</u> Checked: <u>KSD 12/10/2003</u>

December 2003

	P. L. CLARAN STR
	Project Name: Polychemie (LA, CA) Expansion Project Number: 02512.01
	Subject: Risk Assessment - MICR ectimate
2121 newmarket pkwy suita 140	Page: By: <u>NSB</u> Checked: <u>Espl</u>
martetta, ga 30067 tel 770 690 9552 fax 770 490 9529	Of: Date: 10/10/03 Date: 12.10.03
Estimate MICK (see	a dade)
CSTIMATE FILCE	
Use import basel on	annual period i ssing aug harry
emissibh nate	and the design of the test of the second of the
MER= Q×à	XMET XUXMP XLEA
	m3 from modeling
Onit. NEK foctor U (Ruh Table SiA)
acrytamide = 1,32	
multiperhivay fostor in	P (Tube SA)
formaldety de = 1/00 aurunnal = 1.00	
Lifetine TEXporne Arl ist	mant UEA (Table 9)
Worker = 0.64 (to b	elaw for 245/4, 765 % operation)
usidential = 100	
	<u>┤╶╄╶╋╌╋╼╋╌╋╼╋╌╋╼╋╌╋╼╋╌╋╼╋╌╋╼╋</u> ╌╋╼╋╌╋╼╋
MICK-+ Wolken = based on	marginum and ent cure O fendelize
Aerylanicle = 0:00027 m3x 130	$\frac{10}{10}$ X 1.00 KU.66 = 0.232 F-6 V
Formuldelight 0. 18093 5 m3×600	
	6.948 EFG
	++++++++++++++++++++++++++++++++++++++
MICH - Residential - band on	manimum cineestation @ 500m
water states and second and the states of the states states and the states states and the states of the states states and the states and t	ner en anne a ser anne anna anna anna anna anna anna an
Acntamide = 0.00002 ve x 1.31	1917 × 1.00 × 1.00 = 0.026 E-6
tormalderyde = 0.01594-05 1×6.00	$\frac{1}{10^{-6}}$ $\frac{1}{10^{-6}$
	a se a company a second a company a company a company a second a company a company a company a company a company
	61,0×10 0.122 E+6
and the second sec	

23

Tables Effective for Applications Deemed Complete on or after May 2, 2003

Table – 1A

Screening Emission Levels

THESE ARE NOT EMISSION LIMITS. Exceedances of these levels indicate that a screening risk assessment should be performed.

			Screening Emission	Screening Screening	Emission	
Original Date of Listing	Toxic Air Contaminant	CAS NO	Level (lbs/yr) 25 meters	Level (lbs/yr) 50 meters	Level (lbs/yr) 100 meters	
December 7, 1990 September 8, 1998	Acetaldehyde	75-07-0	12.25	32.11	95.70	
January 8, 1999	Acetamide	60-35-5	1.65	4.33	12.92	
June 15, 2001 August 13, 1999	Acrolein	107-02-8	1.98 0.0001 lbs/hr	5.20 0.0002 lbs/hr	15.50 0.0005 lbs/hr	
December 7, 1990	Acrylamide (or propenamide)	79-06-1	0.03	0.07	0.20	
August 13, 1999	Acrylic acid	79-10-7	3.00 lbs/hr	6.00 lbs/hr	16.06 lbs/hr	
December 7, 1990 May 3, 2002	Acrylonitrile (or vinyl cyanide)	107-13-1	0.11	0.30	0.89	
January 8, 1999	Allyl chloride	107-05-1	5.51	14.45	43.07	
January 8, 1999	Aminoanthraquinone, 2-	117-79-3	0.28	0.73	2.16	
August 18, 2000 August 13, 1999	Ammonia	7664-41-7	6,610 1.60 lbs/hr	17,300 3.20 lbs/hr	51,700 8.57 lbs/hr	
January 8, 1999	Aniline	62-53-3	20.66	54.18	161.50	
December 7, 1990 June 15, 2001 August 13, 1999	Arsenic and arsenic compounds ¹ , inorganic	7440-38-2	0.004 0.0001 lbs/hr	0.01 0.0002 lbs/hr	0.03	
August 13, 1999	Arsine	7784-42-1	0.08 lbs/hr	0.16 lbs/hr	0.43 lbs/hr	
June 1, 1990	Asbestos	1332-21-4	0.0005	0.001	0.004	
June 1, 1990 August 18, 2000 August 13, 1999	Benzene (including benzene from gasoline)	71-43-2	1.14 0.739 lbs/hr	2.99 1.48 lbs/hr	8.91 3.96 lbs/hr	
December 7, 1990	Benzidine (and its salts)	92-87-5	0.0002	0.0006	0.0018	
September 8, 1998 August 13, 1999	Benzyl Chloride	100-44-7	0.67 0.12 lbs/hr	1.77 0.24 lbs/hr	5.27 0.64 lbs/hr	
December 7, 1990 May 3, 2002	Beryllium and beryllium compounds ¹	7440-41-7	0.002	0.005	0.016	
December 7, 1990	Bis(2-chloroethyl)ether (DCEE)	111-44-4	0.05	0.12	0.36	
December 7, 1990	Bis(chloromethyl)ether	542-88-1	0.003	0.007	0.020	
September 8, 1998	Bis(2-ethylhexyl)phthalate (DEHP)	117-81-7	14	36	108	
December 7, 1990 June 15, 2001	Butadiene, 1,3-	106-99-0	0.19	0.51	1.52	
June 1, 1990 June 15, 2001	Cadmium and cadmium compounds ¹	7440-43-9	0.008	0.02	0.06	

-

1

 $\overline{2}\overline{1}$

 \rightarrow

Tables Effective for Applications Deemed Complete on or after May 2, 2003

Table – 1A

Screening Emission Levels

THESE ARE NOT EMISSION LIMITS. Exceedances of these levels indicate that a screening risk assessment should be performed.

				Screening	Screening
		1. A.	Emission	Emission 24	Emission
Original Date	Toxic Air Contaminant	CASINO	Level	Level	Level
of Listing	一 经 化单位接触 单		te (lbs/yr)	(lbs/yr)	(lbs/yr)
Carl And State States				50 meters *	100 meters
June 1, 1990	Ethylene dibromide	106-93-4	0.47	1.22	3.64
May 3, 2002	· · · · · · · · · · · · · · · · · · ·				
June 1, 1990	Ethylene dichloride (or 1,2-	107-06-2	1.50	3.94	11.74
June 15, 2001	dichloroethane)				
August 18, 2000	Ethylene glycol	107-21-1	13,200	37,400	103,000
August 18, 2000	Ethylene glycol ethyl ether	110-80-5	2,310	6,070	18,100
February 10, 1999			0.21 lbs/hr	0.42 lbs/hr	1.13 lbs/hr
August 13, 1999	Ethylene glycol monobutyl ether	111-76-2	7.00 lbs/hr	14.00 lbs/hr	37.48 lbs/hr
August 18, 2000	Ethylene glycol monoethyl	111-15-9	9,920	26,000	77,500
August 13, 1999	ether acetate	Contraction and an and a second second	0.08 lbs/hr	0.16 lbs/hr	0.43 lbs/hr
August 18, 2000	Ethylene glycol monomethyl	109-86-4	1,980	5,200	15,500
August 13, 1999	ether		0.05lbs/hr	0.11 lbs/hr	0.28 lbs/hr
August 18, 2000	Ethylene glycol monomethyl ether acetate	110-49-6	2,980	7,800	23,300
June 1, 1990	Ethylene oxide	75-21-8	0.38	0.99	2.94
June 15, 2001		06.15.7			
January 8, 1999	Ethylene thiourea	96-45-7	2.54	6.67	19.88
December 7, 1990	Formaldehyde	50-00-0	5.51	14.45	43.07
August 18, 2000	6		907 1007 107 000 1000	02002030	
August 13, 1999			0.05 lbs/hr	0.09 lbs/hr	0.25 lbs/hr
June 15, 2001	Glutaraldehyde	111-30-8	2.65	6.94	20.7
December 7, 1990	Hexachlorobenzene	118-74-1	0.007	0.02	0.05
December 7, 1990	Hexachlorocyclohexane;				
	technical grade	608-73-1	0.008	0.02	0.06
September 8, 1998	gamma- (lindane)	58-89-9	0.03	0.07	0.21
August 18, 2000	Hexane (n-)	110-54-3	231,000	607,000	1,810,000
September 8, 1998	Hydrazine	302-01-2	0.007	0.02	0.05
June 15, 2001		505 01 2	0.007	0.02	0.05
August 18, 2000	Hydrogen chloride	7647-01-0	298	780	2,330
August 13, 1999	(hydrochloric acid)	1017 01 0	1.05 lbs/hr	2.10 lbs/hr	5.62 lbs/hr
August 18, 2000	Hydrogen cyanide	74-90-8	298	780	2,330
August 13, 1999	(hydrocyanic acid)	17.70-0	0.17 lbs/hr	0.34 lbs/hr	2,350 0.91lbs/hr
August 13, 1999	Hydrogen fluoride	7664-39-3	0.12 lbs/hr	0.24 lbs/hr	0.64 lbs/hr
	(hydrofluoric acid)	1001-001	0.17 109/11	0.24 105/11	0.04 105/01

62

Tables Effective for Applications Deemed Complete on or after May 2, 2003

Table – 8A

Unit Risk Factor (U), Reference Exposure Level (REL) and Multi Pathway Adjustment Factors (MP)

Toxic Air Contaminant	Unit Risk	MP	REL	w MP	Acut	e) 🚱	
	Factor	(MICR)	(Chronic)	(Chronic)	REL	Avg	
		Sector Sector		den sa sa s		Hrs	
Acetaldehyde	2.70E-06	1.00	9.00E+00	1.00			
Acetamide	2.00E-05	1.00					
Acrolein			6.00E-02	1.00	1.90E-01	1	
Acrylamide (or propenamide)	1.30E-03	1.00					
Acrylic acid					6.00E+03	1	
Acrylonitrile (or vinyl cyanide)	2.90E-04	1.00	5.00E+00	1.00		1	
Allyl chloride	6.00E-06	1.00				10.0	
Aminoanthraquinone, 2-	9.40E-06	12.70		······································			
Ammonia			2.00E+02	1.00	3.20E+03	1	
Aniline	1.60E-06	1.00					
Arsenic	3.30E-03	2.70	3.00E-02	5.7	1.90E-01	4	
Arsenic compounds (inorganic)	3.30E-03	2.70	3.00E-02	5.7	1.90E-01	4	
Arsine	- 1880 F.C 1890, 400		i takan ing sa		1.60E+02	1	
Asbestos	6.30E-02	1.00					
Benzene (including benzene from gasoline)	2.90E-05	1.00	6.00E+01	1.00	1.30E+03	6	
Benzidine (and it salts)	1.40E-01	1.00					
Benzyl chloride	4.90E-05	1.00	eren ered		2.40E+02	1	
Beryllium (and beryllium compounds)	2.40E-03	6.90	7.00E-03	1.00			
Bis(2-chloroethyl)ether (DCEE)	7.10E-04	1.00					
Bis(chloromethyl)ether	1.30E-02	1.00	0.000	i sternovic,			
Bis(2-ethylhexyl)phthalate (DEHP)	2.40E-06	1.00			o		
Butadiene, 1,3-	1.70E-04	1.00	2.00E+01	1.00		1	
Cadmium and cadmium compounds	4.20E-03	1.00	2.00E-02	16.00	(-)		
Carbon disulfide		1.	8.00E+02	1.0	6.20E+03	6	
Carbon tetrachloride	4.20E-05	1.00	4.00E+01	1.00	1.90E+03	7	
Chlorinated dioxins & dibenzofurans	3.80E+00	6.80	4.00E-05	82.00			
Heptachlorodibenzofuran, 1,2,3,4,6,7,8-	3.80E-01	1.00	4.00E-03	82.00	sanata a		
Heptachlorodibenzofuran, 1,2,3,4,7,8,9-	3.80E-01	1.00	4.00E-03	82.00			
Heptachlorodibenzofuran, total	3.80E-01	1.00	4.00E-03	82.00			
Heptachlorodibenzo-p-dioxin,	3.80E-01	1.00	4.0E-03	82.00			
1,2,3,4,6,7,8-	0.001-01	1.00	4.00-03	02.00			
Heptachlorodibenzo-p-dioxin, total	3.80E-01	1.00	4.00E-03	82.00			

•

Tables Effective for Applications Deemed Complete on or after May 2, 2003

Table – 8A

Unit Risk Factor (U), Reference Exposure Level (REL) and Multi Pathway Adjustment Factors (MP)

Toxic Air Contaminant	Unit Risk	MP	REL	MP -	Acute	Se why are and
	Factor	(MICR)	(Chronie)	(Chronic)	REL	Avg
Ethylene glycol monomethyl ether	The construction of the second		6.0E+01	1.00	9.30E+01	Hrs 6
Ethylene glycol monomethyl ether acetate		1996 - Marine I.	9.0E+01	1.00	3,50L101	0
Ethylene oxide	8.80E-05	1.00	3.00E+01	1.00		
Ethylene thiourea	1.30E-05	1.00	elocator	1.00		
Formaldehyde	6.00E-06	1.00	3.0E+00	1.00	9.40E+01	1
Glutaraldehyde			8.00E-02	1.00	27.00101	
Hexachlorobenzene	5.10E-04	9.40				100
Hexachlorocyclohexanes:		-		er 1990 - V. 1991 - 19		100000-0
technical grade	1.10E-03	4.00		- 18 - 000 A - 183 - 19		
gamma- (lindane)	3.10E-04	4.00		. <u></u>		8
Hexane (n-)	10 - 1440 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1460 - 1		7.00E+03	1.00		<u></u>
Hydrazine	4.90E-03	1.00	2.00E-01	1.00	The second	<u>ka na pena</u>
Hydrogen chloride (hydrochloric acid)		e ^{rana} - 1988.	9.00E+00	1.00	2.10E+03	î
Hydrogen cyanide (hydrocyanic acid)			9.00E+00	1.00	3.40E+02	1
Hydrogen fluoride (hydrofluoric acid)		n ni on			2.40E+02	1
Hydrogen selenide			alli d		5.00E+00	1
Hydrogen sulfide			1.00E+01	1.00	4.20E+01	1
Isophorone			2.00E+03	1.00		<u> </u>
Isopropyl alcohol		- 13 - 345	7.00E+03	1.00	3.20E+03	1
Lead and lead compounds (inorganic, including elemental lead), including but not limited to:	1.20E-05	1.00	1695-51 - 5 XX		5.202103	
Lead compounds, inorganic	1.20E-05	1.00		100		NAN ANA A
Lead compounds (other than inorganic)	1.20E-05	1.00				
Lead acetate	1.20E-05	1.00		15. Ad 0. 20		1000000
Lead chromate	*	*				
Lead phosphate	1.20E-05	1.00				10000
Lead subacetate	1.20E-05	1.00		·······	100	
Maleic anhydride	-10-10-10-10-10-10-10-10-10-10-10-10-10-		7.00E-01	1.00		
Manganese and manganese compounds	2 334-30 34-3		2.00E-01	1.00		

12

Tables Effective for Applications Deemed Complete on or after May 2, 2003

3

Table - 9

Lifetime Exposure Adjustment (LEA) Factors

Type of Receptor	LEA Factor
Sensitive	1.0
Residential	1.0
Off-site Worker	0.14, if permit unit operates 24 hr/day, 365 days/yr 0.66, if permit unit does not operate 24 hr/day, 365 days/yr

When performing a screening risk assessment for offsite worker receptors, only 0.14 and 0.66 may be used for the LEA. Do not prorate for other operating schedules.

Table - 10A

Target Organs Affected by Toxic Air Contaminants (Chronic Toxicity)

Toxic Air Contaminant	CV/BL	CNS/ PNS	ENDO	EYE	IMMUN	KIDN	ALIMEN (GI/LV)	REPR	RESP	SKIN
Acetaldehyde	0		<u> </u>	f					x	ſ
Acrylonitrile					1.5.5				x	
Acrolein				x	10.00			00 - 200 - 200	X	
Ammonia					0200		1,9090A9		x	
Arsesnic	x	x			1.00			x	^	
Benzene	x	x				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		X	-	
Beryllium and beryllium compounds		ALL 2 GIVE			X -		1. 1. 1		x	
Butadiene								x		
Cadmium	in a second					x	contraction -	<u> </u>	x	-
Carbon disulfide		x					pro-	x	<u>x</u>	c <u>1997</u>
Carbon tectrachloride		x			2266	3458 6	x	x		
Chlorine	-100				10.2	- 1949		A	x	
Chlorine dioxide	···· (489				
Chlorobenzene						x	x	x	<u>x</u>	
Chloroform						x	x	x		
Chloropicrin						<u>^</u>	<u> </u>	<u> </u>	-	
Chlorinated dioxins & dibenzofurans	x		x				x	x	x x	-
Chromic trioxide (as chromic acid mist)									x	
Chromium, hexavalent							5.76 <u>0 (ch</u> . 16)	1 10-20	x	
Cresol mixtures		x			0.000		100 gar		····	
Dichlorobenzene		x				x	x	600 (Age)	x	
Dichloroethylene		-	0				x	a	<u> </u>	
Diethanolamine	x	x				a 896	A	1		
Dimethylformamide				1.01		2010/2010	x			
Dioxane	x					x	- <u>x</u>		x	

ng Inputs - Increased Mannich Production and New Process	2003 Modifications Application	Polychemie, Inc Los Angeles, CA	GESI Project Na. 02512.01
--	--------------------------------	---------------------------------	---------------------------

.

0.00E+00 6.10E-03 1.11E-01	7 4.67E-03 (6 6.10E-03 (5.85E-04 FOR-1HR	0.1524 8.70E-07 4.67E-03 0.1524 2.44E-06 6.10E-03 0.1524 1.01E-05 5.85E-04 ACR FOR FOR-1HR	0.1524 0.1524 0.1524 ACR	12.94 12.94 3.10 Vertical Dimension	7.62 298.15 7.62 298.15 6.10 298.15 Release Horizontal Height Dimension	7.62 7.62 6.10 6.10 Height 1	0 0 Base Elevation	390999.84 3769459.50 0 7.62 298.15 12.94 391003.60 3769452.00 0 7.62 298.15 12.94 391021.84 3769445.25 0 6.10 298.15 3.10 Base Retease Horizontal Vertical Easting (X) Northing (Y) Elevation Height Dimension Dimension	391021.84 391021.84 391021.84 Easting (X)	SCI Scrubber 1 SC2 Scrubber 2 SC3 Scrubber 3	SC3 SC3
	6.10E-03	2.44E-06	0.1524	12.94	298.15	7.62	0	3769452.00	391003.60	Scrubber 2	SC2
	4.67E-03	8.70E-07	0.1524	12.94	298.15	7.62	0	3769459.50	390999.84	Scrubber 1	SCI
FOR-1HR (lb/hr)	FOR (lb/hr)	ACR (lb/hr)	Diameter (m)	Velocity (m/s)	Temp (K)	Height (m)	Elevation (m)	Easting (X) Northing (Y) Elevation (m) (m) (m)	Easting (X) (m)	Description	Source ID
	S2(020000)	and the second second	and a state of the				1000 H	STAR SHEET STAR	NULL OF NULL OF		

(lb/hr) 4.02E-03

FOR (lb/hr) 4.02E-03

26.05

13.13

(II) 2.29

0 (Щ)

Source IDDescription(m)(m)FUGITIVEFugitives391012.503769448.75

(E)

(m)

ACR (lb/hr)

Supporting Calculations

source ID	Height (ft)	Diameter (in)	Diameter (ft)	Diameter 1 (m)	Flow Rate (cfm)	Flow Rate Flow Rate (cfm) (cf/sec)	Diameter (sq. ft.)	Exit Velocity (ft/sec)	EXIT Velocity (m/sec)
SCI	25	9	0.5	0.1524	500	8.333	0.196	42.441	12.936
SC2	25	9	0.5	0.1524	500	8.333.	0.196	42.441	12.936
SC3	20	9	0.5	0.1524	120	2.000	0.196	10.186	3.105

-

Distance (m)

Distance (m)

Height (ft)

56.01

56.46

7.5

Source ID FUGITIVE Notes:

3.28083 feet in meters

Horizontal dimension = horizontal distance / 4.3 (as per Table 3-1 of EPA's User's Guide for the ISC3 Dispersion Models) Vertical dimension = vertical distance / 2.15 (as per Table 3-1 of EPA's User's Guide for the ISC3 Dispersion Models) By: NSB 12/10/2003 Checked: KSD 12/10/2003

SUMMARY OF EMISSIONS TO BE MODELED - NEW PROCESS AND INCREASED MANNICH PRODUCTION 2003 Modifications Application Polychemie, Inc. - Los Angeles, California GESI Project No. 02512.01

		1	UNCONTROLL	ED EMISSIONS	
Equipment		Acryla	mide	Forma	ldehyde
ID	Process Step	lbs/yr	ton/yr	lbs/yr	tons/yr
PTI	Fill reactor		0.0		
NR1, NR2 &	Fill reactor	0.07	0.00		
NR4	Sparge reactor	0.69	0.00		
Scrubber	Total (SCI)	0.76	0.00	CALC FROM P	ERMIT VALUE
PT2	Fill reactor				1
NR3	Fill reactor	0.20	0.00		
	Sparge reactor	1.94	0.00		
Scrubber.	2-Total (SC2)	2.13	0.00	CALC, FROM F	ERMIT VALUE
V10	AM tank	3.27	0.00		
V16	FOR tank			5.13	0.00
CPR1 & CPR2	ADAM-quat	5.57	0.00	-1-2	
Scrubber	3 Total (SC3)	- 883	r 0.00	13	1 0.00
	Fugitives			- 35.22	0.02

		18 93 	CONTROLLE	D EMISSIONS	
Equipment		Acryla	mide	Formal	dehyde
ID	Process Step	lbs/yr	ton/yr	lbs/yr	ton/yr
PTI	Fill reactor	11. HITMS:			
NR1, NR2 &	Fill reactor	0.0007	0.0000		
NR4	Sparge reactor	0.0069	0.0000		
Scrubber	Total (SCI)	0.0076	0.0000	CALC FROM	ERMIT VALUE
PT2	Fill reactor			- 1940.04 	
NR3	Fill reactor	0.0020	0.0000		1
	Sparge reactor	0.0194	0.0000		en seren al seren a
Scrubber 1	Total (SC2)	0:0213	0.0000	CALC FROM P	ERMIT VALUI
V10	AM tank	0.0327	0.0000		00.00000000000000000000000000000000000
V16	FOR tank			5.1272	0.0026
CPRI & CPR2	ADAM-quat	0.0557	0.0000		
Scrubber	3 Total (SC3)	0.0883	0.0000	5.1272	0.0026
	Fugitives		ANDRE G. G. G. BRID	35.2235	0.0176

NOTES: - A blank indicates emission of constituent are not present or are negligible.

By: <u>NSB 12/10/2003</u> Checked: <u>KSD 12/10/2003</u>

FORMALDEHYDE MODELING RESULTS – 1 HOUR AVERAGING PERIOD NOTE: NOT ALL INPUT/OUTPUT DATA SHOWN

**BEE-Line Software: BEEST for Windows (Version 9.02) data input file ** Model: ISCST3 File Creation Date: 12/10/2003 Time: 1:14:23 PM ** ECHO

CO STARTING CO TITLEONE Polypure Inc. - Los Angeles California CO TITLETWO 2003 Modifications CO MODELOPT CONC URBAN NOCALM CO AVERTIME 1 CO POLLUTID FOR-1HR CO TERRHGTS FLAT CO RUNORNOT RUN CO FINISHED SO STARTING SO ELEVUNIT METERS SO LOCATION SC2 POINT 391003.6 3769452. 0. SO SRCPARAM SC2 0.0007686 7.62 298.15 12.936 0.1524 12.19 12.19 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 0.00 0.00 5.49 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 5.49 5.49 5.49 5.49 SO BUILDNGT SC2 0.00 0.00 0.00
 0.00
 0.00
 0.00
 0.00

 14.08
 12.73
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00
 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 12.19 SO BUILDWID SC2 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 SO BUILDWID SC2 0.00 24.77 27.36 21.43 SO BUILDWID SC2 17.44 13.15 17.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 0.00 0.00 15.00 SO LOCATION FUGITIVE VOLUME 391012.5 3769448.75 0. SO SRCPARAM FUGITIVE 0.0005065 2.29 13.13 26.05 SO LOCATION SC3 POINT 391021.84 3769445.25 0. SO SRCPARAM SC3 0.0139858 6.1 298.15 3.105 0.1524 9.45 9.45 12.19 SO BUILDHGT SC3 12.19 5.49 5.49 SO BUILDHGT SC3 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC3 0.00 0.00 0.00 5.49 5.49 5.49 SO BUILDHGT SC3 5.49 5.49 5.49 5.49 5.49 5.49 SO BUILDHGT SC3 0.00 0.00 7.47 7 47 7.47 7.47 SO BUILDHGT SC3 7.47 7.47 0.00 5.49 5.49 9.45 SO BUILDWID SC3 22,30 20,93 12.93 13.84 24.77 21.43 SO BUILDWID SC3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC3 28.37 27.46 29.00 SO BUILDWID SC3 24.77 29.95 29.99 29.11 27.36 21.43 0.00 0.00 75.18 68.52 SO BUILDWID SC3 78.00 80.98 81.50 79.55 SO BUILDWID SC3 0.00 28.37 27.46 23.00 SO SRCGROUP ALL SO FINISHED RE STARTING

RE DISCCART 390900.0 3769400.0 NOT ALL RE CARDS SHOWN RE DISCCART 391273.0 3770502.0 RE FINISHED

```
ME STARTING

ME INPUTFIL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM &

DAD\Modeling\DLA.ASC"

ME ANEMHGHT 10.0000

ME SURFDATA 52075 1981

ME UAIRDATA 91919 1981

ME FINISHED

OU STARTING

OU RECTABLE 1 FIRST SECOND

OU PLOTFILE 1 ALL FIRST "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM &

DAD\Modeling\PPLA 190MM_81_FOR-1HR.GRF" 30

OU PLOTFILE 1 ALL SECOND "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM &

DAD\Modeling\PPLA 190MM_81_FOR-1HR.GRF" 30

OU FLOTFILE 1 ALL SECOND "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM &

DAD\Modeling\PPLA 190MM_81_FOR-1HR.GRF" 30

OU FINISHED
```

BEE-Line ISCST3 "BEEST" Version 9.00

Input File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_FOR-1HR.DTA

Output File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_FOR-1HR.LST

Met File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC

```
*** ISCST3 - VERSION 02035 ***
 *** Polypure Inc. - Los Angeles California ***
                                                                12/10/03
 *** 2003 Modifications ***
                                                                13:17:41
 **MODELOPTs:
                                                                PAGE 1
             URBAN FLAT
 CONC
                             NOCALM
                 ***
                         MODEL SETUP OPTIONS SUMMARY
                                                         ***
 **Intermediate Terrain Processing is Selected
**Model Is Setup For Calculation of Average CONCentration Values.
   -- SCAVENGING/DEPOSITION LOGIC -- .
 **Model Uses NO DRY DEPLETION. DDPLETE = F
**Model Uses NO WET DEPLETION.
                              WDPLETE = F
**NO WET SCAVENGING Data Provided.
**NO GAS DRY DEPOSITION Data Provided.
**Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations
**Model Uses URBAN Dispersion.
**Model Uses User-Specified Options:
          1. Final Plume Rise.
           2. Stack-tip Downwash.
          3. Buoyancy-induced Dispersion.
           4. Not Use Calms Processing Routine.
          5. Not Use Missing Data Processing Routine.
          6. Default Wind Profile Exponents.
          7. Default Vertical Potential Temperature Gradients.
**Model Assumes Receptors on FLAT Terrain.
**Model Assumes No FLAGPOLE Receptor Heights.
**Model Calculates 1 Short Term Average(s) of: 1-HR
**This Run Includes:
                       3 Source(s);
                                        l Source Group(s); and 6198
Receptor(s)
**The Model Assumes A Pollutant Type of: FOR-1HR
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
        Model Outputs Tables of Highest Short Term Values by Receptor
(RECTABLE Keyword)
        Model Outputs External File(s) of High Values for Plotting (PLOTFILE
Keyword)
**Misc. Inputs: Anem. Hgt. (m) =
                                 10.00 ; Decay Coef. = 0.000
                                                                       ;
Rot. Angle =
                0.0
                Emission Units = GRAMS/SEC
                                                                        ÷
Emission Rate Unit Factor = 0.10000E+07
Output Units = MICROGRAMS/M**3
**Approximate Storage Requirements of Model =
                                              1.6 MB of RAM.
**Input Runstream File:
                              PPLA 190MM_81_FOR-1HR.DTA
**Output Print File:
                            PPLA 190MM_81_FOR-1HR.LST
```

1000

*** ISC	ST3 - VERSION	02035 ***		
		os Angeles Californi	a ***	12/10/03
MODEL)3 Modification OPTs:	5 *		13:17:41
CONC	URBAN FLAT	NOCALM		PAGE 233

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF FOR-1HR IN MICROGRAMS/M**3 **

GROUP ID AVI ALL HIGH 3769381.50, HIGH 3769381.50,	1ST HIGH VALUE IS 0.00, 0.00)	52.98899 ON 81082705: AT (390983.00, DC NA
*** RECEPTOR	TYPES: GC = GRIDCA GP = GRIDPO DC = DISCCA DP = DISCPO BD = BOUNDA	RT OF I-hv Cive

```
*** ISCST3 - VERSION 02035 ***

*** Polypure Inc. - Los Angeles California ***

*** 2003 Modifications ***

**MODELOPTs:

CONC URBAN FLAT NOCALM

***
```

*** Message Summary : ISCST3 Model Execution ***

А	Total	of	0 Fatal Error Message(s)	
A	Total	of	0 Warning Message(s)	
A	Total	of	692 Informational Message(s)

A Total of 692 Calm Hours Identified

******** FATAL ERROR MESSAGES ******** *** NONE ***

******** WARNING MESSAGES ******* *** NONE ***

*

ACRYLAMIDE MODELING RESULTS – ANNUAL AVERAGING PERIOD MICR WORKER- 25 Meter Receptors NOTE: NOT ALL INPUT/OUTPUT DATA SHOWN

**BEE-Line Software: BEEST for Windows (Version 9.02) data input file ** Model: ISCST3 File Creation Date: 12/10/2003 Time: 1:14:22 PM ** ECHO

	STARTING							
CO	TITLEONE	Pol	ypure Inc Lo	s Angeles	Californ	i =		
CO	TITLETWO	200	3 Modifications	3	ourrorn			
			C URBAN NOCALM					
	AVERTIME							
CO	POLLUTID	ACR	YLAMI					
	TERRHGTS						42	
CO	RUNORNOT	RUN						
	FINISHED					1		
SO	STARTING							
	ELEVUNIT	METI	ERS					
			POINT 390999.8	4 3760460	E O			
SO	SRCPARAM	SC1	1.096182E-07 7	- 5709499. - 67 709 10	= 0.	0 1 0 0 4		
80	BUILDHGT	SCI	12.19	12.19	0.00			
	BUILDHGT		0.00	0.00	25	0.00	0.00	0.00
	BUILDHGT		0.00		0.00	0.00	0.00	0.00
	BUILDHGT		0.00	0.00	0.00	0.00	0.00	0.00
	BUILDHGT			0.00	0.00	0.00	0.00	0.00
	BUILDHGT		5.49	5.49	5.49	5.49	5.49	0.00
			0.00	0.00	0.00	0.00	0.00	12.19
	BUILDWID		14.08	12.73	0.00	0.00	0.00	0.00
	BUILDWID		0.00	0.00	0.00	0.00	0,00	0.00
	BUILDWID		0.00	0.00	0.00	0.00	0.00	0.00
	BUILDWID		0.00	0.00	0.00	0.00	0.00	0.00
	BUILDWID		17.44	13,15	17.00	20.91	24.18	0.00
	BUILDWID		0.00	0.00	0.00	0.00	0.00	15.00
SO	LOCATION	SC2	POINT 391003.6	3769452.	Ο.			
so	SRCPARAM	SC2	3.074348E-07 7		12.936 (0.1524		
	BUILDHGT		12.19	12.19	0.00	0.00	0.00	0.00
	BUILDHGT		0.00	0.00	0.00	0.00	0.00	0.00
	BUILDHGT		0.00	0.00	0.00	0.00	0.00	0.00
	BUILDHGT		0.00	0.00	0.00	5.49	5.49	5.49
	BUILDHGT		5.49	5.49	5.49	0.00	0.00	0.00
	BUILDHGT		0.00	0.00	0.00	0.00	0.00	12.19
SO	BUILDWID	SC2	14.08	12.73	0.00	0.00	0.00	0.00
SO	BUILDWID	SC2	0.00	0.00	0.00	0.00	0.00	0.00
SO	BUILDWID	SC2	0.00	0.00	0.00	0.00	0.00	0.00
SO	BUILDWID	SC2	0.00	0.00	0.00	27.36	24.77	21.43
SO	BUILDWID	SC2	17.44	13.15	17.00	0.00	0.00	0.00
SO	BUILDWID	SC2	0.00	0.00	0.00	0.00	0.00	15.00
SO	LOWBOUND	SC2	0 0 0 0 1 0 0		0 0 0 0	0.00	0.00	15.00
	LOWBOUND		0000000	00000	0 0 0 0	0 0		
			POINT 391021.84	1 3769445	25 0	U U		
SO	SRCPARAM	SC3	1.272579E-06 6	1 298 15	3 105 0 1	534		
SO	BUILDHGT	SC3	9.45	9.45	12.19	12.19	1949 - 1949 B	1221 110313
	BUILDHGT		0.00	0.00	0.00		5.49	5.49
	BUILDHGT		0.00	0.00	0.00	0.00	0.00	0.00
	BUILDHGT .		5.49	5.49		5,49	5.49	5.49
	BUILDHGT		0.00	0.00	5.49	5.49	5.49	5.49
	BUILDHGT		7.47	7.47	7.47	7.47	7.47	7.47
	BUILDWID :		22.30	20.93	0.00	5.49	5.49	9.45
	BUILDWID :		0.00	20.93	12,93	13.84	24.77	21.43
	BUILDWID :		0.00		0.00	0.00	0.00	0.00
			0.00	0.00	0.00	28.37	27.46	29.00

29.95 29.99 29.11 27.36 24.77 0.00 0.00 78.00 80.98 81.50 75.18 68.52 0.00 28.37 27.46 SO BUILDWID SC3 21.43 SO BUILDWID SC3 79.55 SO BUILDWID SC3 23.00 SO SRCGROUP ALL SO FINISHED RE STARTING RE DISCCART 390900.0 3769400.0 NOT ALL RE CARDS SHOWN RE DISCCART 391273.0 3770502.0 RE FINISHED ME STARTING ME INPUTFIL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC" ME ANEMHGHT 10,0000 ME SURFDATA 52075 1981 ME UAIRDATA 91919 1981 ME FINISHED OU STARTING OU PLOTFILE PERIOD ALL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_ACRYLAMI.GRF" 30 OU FINISHED BEE-Line ISCST3 "BEEST" Version 9.00 Input File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_ACRYLAMI.DTA Output File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_ACRYLAMI.LST

Met File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC

```
*** ISCST3 - VERSION 02035 ***
 *** Polypure Inc. - Los Angeles California ***
                                                                    12/10/03
 *** 2003 Modifications ***
                                                                    13:14:37
 * * MODELOPTs :
                                                                    PAGE 1
 CONC
               URBAN FLAT
                                  NOCALM
                 ***
                       MODEL SETUP OPTIONS SUMMARY
                                                         * * *
 **Intermediate Terrain Processing is Selected
 **Model Is Setup For Calculation of Average CONCentration Values.
   -- SCAVENGING/DEPOSITION LOGIC --
 **Model Uses NO DRY DEPLETION. DDPLETE = F
 **Model Uses NO WET DEPLETION. WDPLETE = F
 **NO WET SCAVENGING Data Provided.
 **NO GAS DRY DEPOSITION Data Provided.
 **Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations
 **Model Uses URBAN Dispersion.
**Model Uses User-Specified Options:
           1. Final Plume Rise.
           2. Stack-tip Downwash.
           3. Buoyancy-induced Dispersion.
           4. Not Use Calms Processing Routine,
           5. Not Use Missing Data Processing Routine.
           6. Default Wind Profile Exponents.
          7. Default Vertical Potential Temperature Gradients.
**Model Assumes Receptors on FLAT Terrain.
**Model Assumes No FLAGPOLE Receptor Heights.
**Model Calculates PERIOD Averages Only
**This Run Includes:
                       3 Source(s);
                                      1 Source Group(s); and
                                                                  6198
Receptor(s)
**The Model Assumes A Pollutant Type of: ACRYLAMI
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
        Model Outputs Tables of PERIOD Averages by Receptor
        Model Outputs External File(s) of High Values for Plotting (PLOTFILE
Keyword)
**Misc. Inputs: Anem. Hgt. (m) =
                                10.00 ; Decay Coef. = 0.000
                                                                       ;
Rot. Angle =
                0.0
                Emission Units = GRAMS/SEC
Emission Rate Unit Factor = 0.10000E+07
                                                                       ;
                Output Units = MICROGRAMS/M**3
**Approximate Storage Requirements of Model = 1.5 MB of RAM.
**Input Runstream File:
                              PPLA 190MM_81_ACRYLAMI.DTA
**Output Print File:
                              PPLA 190MM_81_ACRYLAMI.LST
```

*** ISCST3 - VERSI	ON 02035 ***	8
	- Los Angeles California ***	12/10/03 13:14:37
CONC	URBAN FLAT	PAGE 154 NOCALM

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF ACRYLAMI IN MICROGRAMS/M**3 **

GROUP	ID AVERA	JE CONC RE	CEPTOR (XR,	YR,	ZELEV	, ZFLAG)	NETWORK OF TYPE GRID-ID
					84 26		
ALL	1ST HIGHES	F VALUE IS	0.00027	AT	1 39	0983 00	37(0301 60
0.00,	0.001 D	- NA					
and another	2ND HIGHEST	r value is	0.00026	AT	(39	0969.00.	3769388 00
0.00,	0.001 D	- NA			55 2.75881		2,02300.00,
120 121121	3RD HIGHES	VALUE IS	0.00025	AT	(39	0997.00.	3769375.00,
0.00,	0.00) D(
0 00	4TH HIGHEST		0.00023	AT	(39	0973.00,	3769377.00,
0.00,	1089030804904 (MSS						
0.00	5TH HIGHEST		0.00022	AT	(39)	0956.00,	3769391.50,
0.00,		- NA					
0.00,	6TH HIGHEST 0.00) DC		0.00019	AT	(39)	0948.00,	3769377.00,
0.007	7TH HIGHEST				4 3353844		
0.00,	0.00) DC		0.00018	AT	(390	0973.00,	3769352.00,
	8TH HIGHEST	WALTE TO	0 00010	70.077	1		
0.00,	0.00) DC	NA NA	0.00018	AT	(39.	L028.50,	3769522.50,
10701	9TH HIGHEST	Constraints of the second s	0 00017	7.07	1 201	000 00	5
0.00,	0.00) DC		0.00017	M1	(39.	1023.00,	3769527.00,
CONTRACTOR OF THE OWNER OF T	10TH HIGHEST		0.00015	ልጥ	1 201	0040 00	3769352.00,
0.00,	0.00) DC		2.00010	ril	1 230	1940,00,	3769352.00,
							_

***	RECEPTOR	TYPES:	GC	2	GRIDCART
			GP	=	GRIDPOLR
			DC	=	DISCCART
			DP	- 22	DISCPOLR
			BD	(F)	BOUNDARY

```
*** ISCST3 - VERSION 02035 ***12/10/03*** Polypure Inc. - Los Angeles California ***12/10/03*** 2003 Modifications ***13:14:37**MODELOPTs:PAGE 155CONCURBAN FLATNOCALM
```

*** Message Summary : ISCST3 Model Execution ***

------ Summary of Total Messages ------

A	Total Total Total	of	0 Fatal Error Message(s) 0 Warning Message(s) 692 Informational Message(s)
A	Total	of	692 Calm Hours Identified

******** FATAL ERROR MESSAGES ******* *** NONE ***

******* WARNING MESSAGES ******** *** NONE ***

~

FORMALDEHYDE MODELING RESULTS – ANNUAL AVERAGING PERIOD MICR WORKER- 25 Meter Receptors NOTE: NOT ALL INPUT/OUTPUT DATA SHOWN

**BEE-Line Software: BEEST for Windows (Version 9.02) data input file ** Model: ISCST3 File Creation Date: 12/10/2003 Time: 1:14:22 PM ** ECHO

CO STARTING CO TITLEONE Polypure Inc. - Los Angeles California CO TITLETWO 2003 Modifications CO MODELOPT CONC URBAN NOCALM CO AVERTIME PERIOD CO POLLUTID FORMALDE CO TERRHGTS FLAT CO RUNORNOT RUN CO FINISHED SO STARTING SO ELEVUNIT METERS SO LOCATION SC1 POINT 390999.84 3769459.5 0. SO SRCPARAM SC1 0.0005884 7.62 298.15 12.936 0.1524 SO BUILDHGT SC1 12.19 12.19 0.00 0.00 0.00 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0.00 0.00 5.49 5.49 0.00 0.00 SO BUILDHGT SC1 5.49 0.00 5.49 5.49 0.00 SO BUILDHGT SC1 0.00 0.00 12.19 SO BUILDWID SCI 0.00 14.08 12.73 0.00 0.00 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC1 0.00 0.00 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 0.00 17.44 SO BUILDWID SC1 13.15 17.00 20.91 24.18 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 15.00 SO LOCATION SC2 POINT 391003.6 3769452. 0. SO SRCPARAM SC2 0.0007686 7.62 298.15 12.936 0.1524 12.19 SO BUILDHGT SC2 0.00 0.00 12.19 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 5.49 5.49 5.49 SO BUILDHGT SC2 5.49 5.49 5.49 0.00 0.00 0.00 0.00 0.00 14.08 12.73 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 12.19 SO BUILDWID SC2 0.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 27.36 24.77 21.43 SO BUILDWID SC2 17.44 17.00 13.15 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 0.00 0.00 15.00 SO LOCATION FUGITIVE VOLUME 391012.5 3769448.75 0. SO SRCPARAM FUGITIVE 0.0005065 2.29 13.13 26.05 SO LOCATION SC3 POINT 391021.84 3769445.25 0. SO SRCPARAM SC3 7.370876E-05 6.1 298.15 3.105 0.1524 SO BUILDHGT SC3 9.45 9.45 12.19 12.19 5.49 5.49 SO BUILDHGT SC3 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC3 0.00 0.00 0.00 5.49 5.49 5 49 SO BUILDHGT SC3 5.49 5.49 5.49 5.49 5.49 5.49 SO BUILDHGT SC3 0.00 0.00 7.47 7.47 7.47 7.47

SO BUILDHGT SC3 7.47 7.47 0.00 5.49 5.49 9.45 SO BUILDWID SC3
 20.93
 12.93
 13.84
 24.77

 0.00
 0.00
 0.00
 0.00
 22.30 21.43 SO BUILDWID SC3 0.00 0.00 0.00 0.00 0.00 28.37 29.11 27.36 78.00 80.98 0.00 29.95 SO BUILDWID SC3 0.00 29.99 27.46 -/.46 24.77 29.00 SO BUILDWID SC3 21.43 SO BUILDWID SC3 0.00 0.00 81.50 79.55 SO BUILDWID SC3 75.18 68.52 0.00 28.37 27.46 23.00 SO SRCGROUP ALL SO FINISHED RE STARTING RE DISCCART 390900.0 3769400.0 NOT ALL RE CARDS SHOWN RE DISCCART 391273.0 3770502.0 RE DISCCART 391273.0 3770502.0 RE FINISHED ME STARTING ME INPUTFIL "F:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC" ME ANEMHGHT 10.0000 ME SURFDATA 52075 1981 ME UAIRDATA 91919 1981 ME FINISHED OU STARTING OU PLOTFILE PERIOD ALL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_FORMALDE.GRF" 30 OU FINISHED BEE-Line ISCST3 "BEEST" Version 9.00 Input File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_FORMALDE.DTA Output File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 190MM_81_FORMALDE.LST Met File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC *** SETUP Finishes Successfully ***

```
*** ISCST3 - VERSION 02035 ***
 *** Polypure Inc. - Los Angeles California ***
                                                                12/10/03
 *** 2003 Modifications ***
                                                                13:15:57
 **MODELOPTs:
                                                                PAGE 1
 CONC
             URBAN FLAT
                           NOCALM
                 *** MODEL SETUP OPTIONS SUMMARY
                                                        ***
 **Intermediate Terrain Processing is Selected
 **Model Is Setup For Calculation of Average CONCentration Values.
  -- SCAVENGING/DEPOSITION LOGIC --
**Model Uses NO DRY DEPLETION. DDPLETE = F
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO WET SCAVENGING Data Provided.
**NO GAS DRY DEPOSITION Data Provided.
**Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations
**Model Uses URBAN Dispersion.
**Model Uses User-Specified Options:
          1. Final Plume Rise.
          2. Stack-tip Downwash.
          3. Buoyancy-induced Dispersion.
          4. Not Use Calms Processing Routine.
          5. Not Use Missing Data Processing Routine.
          6. Default Wind Profile Exponents.
          7. Default Vertical Potential Temperature Gradients.
**Model Assumes Receptors on FLAT Terrain.
**Model Assumes No FLAGPOLE Receptor Heights.
**Model Calculates PERIOD Averages Only
**This Run Includes:
                       4 Source(s); 1 Source Group(s); and
                                                                  6198
Receptor(s)
**The Model Assumes A Pollutant Type of: FORMALDE
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
      Model Outputs Tables of PERIOD Averages by Receptor
      Model Outputs External File(s) of High Values for Plotting (PLOTFILE
Keyword)
**Misc. Inputs: Anem. Hgt. (m) = 10.00 ; Decay Coef. = 0.000
                                                                       ;
Rot. Angle =
                0.0
               'Emission Units = GRAMS/SEC
Emission Rate Unit Factor = 0.10000E+07
Output Units = MICROGRAMS/M**3
                                                                       1
**Approximate Storage Requirements of Model =
                                             1.5 MB of RAM.
**Input Runstream File:
                              PPLA 190MM_81_FORMALDE.DTA
**Output Print File:
                              PPLA 190MM_81_FORMALDE.LST
```

*** ISCS	T3 - VERSIO	N 02035	***	
*** Polyp	pure Inc	Los An	geles California ***	12/10/03
	Modificati	ons ***		13:15:57
**MODELOI	CONTRACTOR - CONTRACTOR - C			PAGE 155
CONC	URBAN	FLAT	NOCALM	

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF FORMALDE IN MICROGRAMS/M**3 **

GROUP	ID AVERAGE	CONC RECEPTOR	(XR	a,	ZFLEV	ZPI.NOL	NETWORK OF TYPE GRID-ID
20 (21 12							
ALL	1ST HIGHEST	VALUE IS	0.18093	AT	(39	1003.81.	3769522.25,
0.00,	0.00) DC	NA				1997-1997 - Forder of Paris of Arts	,
	2ND HIGHEST	VALUE IS	0.14785	AT	(39	1023.00.	3769527.00,
0.00,	0.00) DC	NA				1899	
	3RD HIGHEST	VALUE IS	0.14180	AT	(39	0998.00.	3769527.00,
0.00,	0.00) DC	NA			45 MERER	Stears Statistical	-,,
	4TH HIGHEST	VALUE IS	0.13397	AT	(39	1028.50.	3769522.50,
0.00,	0.00) DC	NA				Cardina de Cardon de	
		VALUE IS	0.12765	AT	(39	0943.00,	3769395.00,
0.00,	0.00) DC	NA				11	
		VALUE IS	0,12736	AT	(39	0956.00,	3769391.50,
0.00,		NA					
	7TH HIGHEST	VALUE IS).11681	AT	(39	0948.00.	3769377.00.
0.00,	0.00) DC	NA				10	
	8TH HIGHEST	VALUE IS	0.10970	AT	(39	0923.00,	3769377.00,
0.00,	0.00) DC	NA					
	9TH HIGHEST	VALUE IS	1.10882	AT	(39	0969.00.	3769388.00
0.00,	0.00) DC	NA					
	10TH HIGHEST	VALUE IS	1.10832	AT	(39)	1023.00,	3769552.00.
0.00,	0.00) DC	NA				10	

*** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DF = DISCPOLR BD = BOUNDARY

*** ISCST3 - VERSION 02035 *** *** Polypure Inc. - Los Angeles California *** *** 2003 Modifications *** * *MODELOPTS : URBAN FLAT NOCALM CONC *** Message Summary : ISCST3 Model Execution *** ----- Summary of Total Messages -----A Total of0 Fatal Error Message(s)A Total of0 Warning Message(s)A Total of692 Informational Message(s) A Total of 692 Calm Hours Identified ******* FATAL ERROR MESSAGES ******* *** NONE *** ******* WARNING MESSAGES ******* *** NONE *** ************* *** ISCST3 Finishes Successfully ***

.

12/10/03 13:15:57

PAGE 156

ACRYLAMIDE MODELING RESULTS – ANNUAL AVERAGING PERIOD MICR RESIDENTIAL- 500 Meter Receptors NOTE: NOT ALL INPUT/OUTPUT DATA SHOWN

**]	BEE-Line	Soft	ware: E	BEEST fo	r Windows	(Version 9	0.02) data	a input fi	le						
**	Model:	ISCS'	ГЗ	File Cr	eation Dat	e: 12/10/2	2003 Time	1: 2:08:06	PM						
* *	ECHO														
90	000000000000														
	STARTING			anticator and	and an and a second	Autor and a supervised states									
CO	TITLEONE	POL	ypure I	.nc Le	os Angeles	Californi	a								
			2003 Modifications CONC URBAN NOCALM												
				NOCALM											
	AVERTIME														
	POLLUTID														
	TERRHGTS		r												
	RUNORNOT	RUN													
CO	FINISHED														
SO	STARTING	ε.													
	ELEVUNIT		200												
				300000	34 3769459	E									
					7.62 298.1										
			T.0301					19800 3260025							
	BUILDHGT			12.19		0.00	0.00	0.00	0.00						
	BUILDHGT			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDHGT			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDHGT			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDHGT			5.49	5.49	5.49	5.49	5.49	0.00						
	BUILDHGT		š	0.00	0.00	0.00	0.00	0.00	12.19						
	BUILDWID			14.08	12.73	0.00	0.00	0.00	0.00						
	BUILDMID			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDWID			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDWID			0.00	0.00	0.00	0.00	0.00	0.00						
SO	BUILDWID	SC1		17.44	13.15	17.00	20.91	24.18	0.00						
SO	BUILDWID	SC1		0.00	0.00	0.00	0.00	0.00	15.00						
SO	LOCATION	SC2	POINT	391003.6	5 3769452.	0.									
SO	SRCPARAM	SC2	3.0743	48E-07	7.62 298.15	5 12.936 0	.1524	-							
50	BUILDHGT	SC2		12.19	12.19	0.00	0.00	0.00	0.00						
SO	BUILDHGT	SC2		0.00	0.00	0.00	0.00	0.00	0.00						
SO	BUILDHGT	SC2		0.00	0.00	0.00	0.00	0.00	0.00						
SO	BUILDHGT	SC2		0.00	0.00	0.00	5.49	5.49	5.49						
SO	BUILDHGT	SC2		5.49	5.49	5,49	0.00	0.00	0.00						
SO	BUILDHGT	SC2		0.00	0.00	0.00	0.00	0.00	12.19						
SO	BUILDWID	SC2		14.08	12.73	0.00	0.00	0.00	0.00						
	BUILDWID			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDWID			0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDWID			0.00	0.00	0.00	27.36	24.77	21.43						
	BUILDWID			17.44	13.15	17.00	0.00								
	BUILDWID			0.00	0.00	0.00	0.00	0.00	0.00						
	LOWBOUND		0 0 0		00000			0.00	15.00						
	LOWBOUND				000000										
					1012.5 376										
					3.13 26.05										
					4 3769445.										
	BUILDHGT		1.2/25		.1 298.15			<u>11</u> 200000	<u>117</u> 3860574						
	BUILDHGT			9.45	9,45	12.19	12.19	5.49	5.49						
				0.00	0.00	0.00	0.00	0.00	0.00						
	BUILDHGT			0.00	0.00	0.00	5,49	5,49	5.49						
	BUILDHGT			5.49	5.49	5.49	5.49	5,49	5.49						
	BUILDHGT			0.00	0.00	7.47	7.47	7.47	7.47						
	BUILDHGT			7.47	7.47	0.00	5,49	5.49	9,45						
	BUILDWID	100000000		22.30	20.93	12.93	13.84	24.77	21.43						
SU	BUILDWID	SC3		0.00	0.00	0.00	0.00	0.00	0.00						

SO BUILDWID SC3 0.00 0.00 0.00 28.37 27.46 29.00
 0.00
 0.00
 0.00
 28.37
 27.46

 29.95
 29.99
 29.11
 27.36
 24.77

 0.00
 0.00
 78.00
 80.98
 81.50

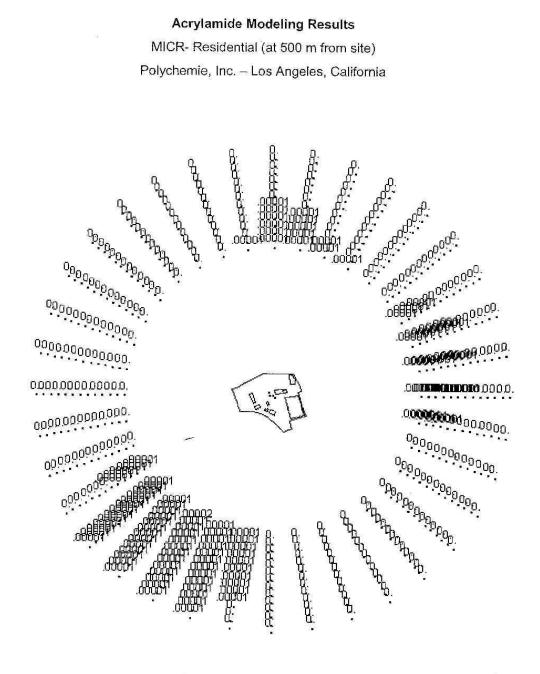
 75.18
 68.52
 0.00
 28.37
 27.46
 SO BUILDWID SC3 21.43 SO BUILDWID SC3 79.55 SO BUILDWID SC3 23.00 SO SRCGROUP ALL SO FINISHED RE STARTING RE GRIDPOLR POLAR STA RE GRIDPOLR POLAR ORIG FUGITIVE RE GRIDPOLR POLAR DIST 500 525 550 575 600 RE GRIDPOLR POLAR DIST 625 650 675 700 725 RE GRIDPOLR POLAR DIST 750 775 800 RE GRIDPOLR POLAR GDIR 36 0 10 RE GRIDPOLR POLAR END RE FINISHED ME STARTING ME INPUTFIL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC" ME ANEMHGHT 10.0000 ME SURFDATA 52075 1981 ME UAIRDATA 91919 1981 ME FINISHED OU STARTING OU PLOTFILE PERIOD ALL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 500 grid_81_ACRYLAMI.GRF" 30 OU FINISHED BEE-Line ISCST3 "BEEST" Version 9.00 Input File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 500 grid 81 ACRYLAMI.DTA منتع Output File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 500 grid_81_ACRYLAMI.LST Met File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC *** Message Summary For ISC3 Model Setup *** ----- Summary of Total Messages ------A Total of 0 Fatal Error Message(s) A Total of 1 Warning Message(s) 0 Informational Message(s) A Total of ******** FATAL ERROR MESSAGES ******** *** NONE *** ******* WARNING MESSAGES ****** SO W320 49 VPARM : Input Parameter May Be Out-of-Range for Parameter OS ****** *** SETUP Finishes Successfully *** *******

```
*** ISCST3 - VERSION 02035 ***
*** Polypure Inc. - Los Angeles California ***
                                                                12/10/03
*** 2003 Modifications ***
                                                                14:08:15
**MODELOPTs:
                                                                PAGE
                                                                      3
CONC
           URBAN FLAT
                            NOCALM
                 *** MODEL SETUP OPTIONS SUMMARY
                                                       ***
      - -
**Intermediate Terrain Processing is Selected
**Model Is Setup For Calculation of Average CONCentration Values.
  -- SCAVENGING/DEPOSITION LOGIC --
**Model Uses NO DRY DEPLETION. DDPLETE = F
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO WET SCAVENGING Data Provided.
**NO GAS DRY DEPOSITION Data Provided.
**Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations
**Model Uses URBAN Dispersion.
**Model Uses User-Specified Options:
          1. Final Plume Rise.
           2. Stack-tip Downwash.
          3. Buoyancy-induced Dispersion.
           4. Not Use Calms Processing Routine.
           5. Not Use Missing Data Processing Routine.
           6. Default Wind Profile Exponents.
          7. Default Vertical Potential Temperature Gradients.
**Model Assumes Receptors on FLAT Terrain.
**Model Assumes No FLAGPOLE Receptor Heights.
**Model Calculates PERIOD Averages Only
**This Run Includes: 4 Source(s); 1 Source Group(s); and
                                                                  468
Receptor(s)
**The Model Assumes A Pollutant Type of: ACRYLAMI
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
        Model Outputs Tables of PERIOD Averages by Receptor
        Model Outputs External File(s) of High Values for Plotting (PLOTFILE
Keyword)
**Misc. Inputs: Anem. Hgt. (m) = 10.00 ; Decay Coef. = 0.000
                                                                       ;
Rot. Angle =
                0.0
                Emission Units = GRAMS/SEC
                                                                        Ŷ
Emission Rate Unit Factor = 0.10000E+07
                Output Units = MICROGRAMS/M**3
**Approximate Storage Requirements of Model =
                                             1.2 MB of RAM.
**Input Runstream File: PPLA 500 grid_81_ACRYLAMI.DTA
**Output Print File: PPLA 500 grid_81_ACRYLAMI.LST
**Input Runstream File:
```

	T3 - VERSION 02035		
		geles California ***	12/10/03
*** 2003	Modifications ***		14:08:15
**MODELC	PTs:		PAGE 11
CONC	URBAN FLAT	NOCALM	

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF ACRYLAMI IN MICROGRAMS/M**3 **


GROUP	ID AVE	RAGE	CONC	RJ	SCEPTOR	z	(XR,	YR.	ZEI	LEV. ZFLAG)	NETWORK OF TYPE GRID-ID
		2 N2		n n		5	n (n (n)	121.1	-		
ALL	1ST HI	GHEST	VALUE	IS	-	Ο.	00002	AT	(390762.50,	3769015.75,
0.00,	0.00) GI	POL	AR							
	2ND HI	GHEST	VALUE	IS		0.	00001	AT	(390841.50,	3768979.00,
0.00,	0.00) G1	POL	AR							
	3RD HI	GHEST	VALUE	IS		ο.	00001	AT	(390691.09.	3769065.75,
0.00,	0.00) G2	P POL	AR						out toorseasurated	
	4TH HI	GHEST	VALUE	IS		Ο.	00001	AT	(390750.00,	3768994.00,
0.00,	0.00) GE) POL	AR						1990-1990-1990-1990-1990-1990-1990-1990	
	5TH HI	GHEST	VALUE	IS		Ο.	00001	AT	(390832.94,	3768955.50,
0.00,	0.00) GE	POL	AR						22	5 258.8
	6TH HI	GHES1	' VALUE	IS		0.	00001	AT	(390675.03.	3769046.50,
0.00,	0.00) GE	POL	AR						nurumentent energend	and the second
	7TH HI	GHEST	VALUE	IS		0.	00001	AT	(390629.47.	3769127.25,
0.00,	0.00) GF	POL	AR					~	and a second	
	8TH HI	GHES1	VALUE	IS		0.	00001	AT	(390737.50,	3768972.50,
0.00,	0.00) GF	POL	AR					8	15	and a second second second
	9TH HI	GHEST	VALUE	IS		0.1	00001	AT	(390824.38.	3768932.00,
0.00,	0.00) GI	POL	AR					A9		
	10TH HI	GHEST	VALUE	IS		0.	00001	AT	0	390658.97.	3769027.50,
0.00	0.00								•		

*** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY

25

```
*** ISCST3 - VERSION 02035 ***
*** Polypure Inc. - Los Angeles California ***
*** 2003 Modifications ***
**MODELOPTs:
                                                                  12/10/03
                                                                  14:08:15
                                                                  PAGE 12
           URBAN FLAT
                        NOCALM
CONC
*** Message Summary : ISCST3 Model Execution ***
 ----- Summary of Total Messages ------
A Total of 0 Fatal Error Message(s)
A Total of 1 Warning Message(s)
A Total of 692 Informational Message(s)
A Total of
                 692 Calm Hours Identified
   ******** FATAL ERROR MESSAGES *******
              *** NONE ***
   ******* WARNING MESSAGES *******
SO W320 49 VPARM :Input Parameter May Be Out-of-Range for Parameter QS
   ******
   *** ISCST3 Finishes Successfully ***
   *****
```

-

ACRYLAMIDE RESULTS - Highest concentration = 0.00002 ug/m3

23

FORMALDEHYDE MODELING RESULTS – ANNUAL AVERAGING PERIOD MICR RESIDENTIAL- 500 Meter Receptors NOTE: NOT ALL INPUT/OUTPUT DATA SHOWN

**BEE-Line Software: BEEST for Windows (Version 9.02) data input file ** Model: ISCST3 File Creation Date: 12/10/2003 Time: 2:08:07 PM ** ECHO CO STARTING CO TITLEONE Polypure Inc. - Los Angeles California CO TITLETWO 2003 Modifications CO MODELOPT CONC URBAN NOCALM CO AVERTIME PERIOD CO POLLUTID FORMALDE CO TERRHGTS FLAT CO RUNORNOT RUN CO FINISHED SO STARTING SO ELEVUNIT METERS SO LOCATION SC1 POINT 390999.84 3769459.5 0. SO SRCPARAM SC1 0.0005884 7.62 298.15 12.936 0.1524 12.19 SO BUILDHGT SC1 12.19 0.00 0.00 0.00 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0 00 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC1 5.49 5.49 5.49 5.49 5.49 0.00 SO BUILDHGT SC1 0.00 0.00 0.00 0.00 0.00 12.19 SO BUILDWID SC1 14.08 12.73 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC1 17.00 17.44 13.15 20.91 24.18 0.00 SO BUILDWID SC1 0.00 0.00 0.00 0.00 0.00 15.00 SO LOCATION SC2 POINT 391003.6 3769452. 0. SO SRCPARAM SC2 0.0007686 7.62 298.15 12.936 0.1524 SO BUILDHGT SC2 12.19 12.19 0.00 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 5.49 5.49 5.49 5.49 SO BUILDHGT SC2 5.49 5.49 0.00 0.00 0.00 SO BUILDHGT SC2 0.00 0.00 0.00 0.00 0.00 12.19 SO BUILDWID SC2 14.08 12.73 0.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 27.36 24.77 21.43 SO BUILDWID SC2 17.44 13.1517.00 0.00 0.00 0.00 SO BUILDWID SC2 0.00 0.00 0.00 0.00 0.00 15.00 SO LOWBOUND SC2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SO LOCATION FUGITIVE VOLUME 391012.5 3769448.75 0. SO SRCPARAM FUGITIVE 0.0005065 2.29 13.13 26.05 SO LOCATION SC3 POINT 391021.84 3769445.25 0. SO SRCPARAM SC3 7.370876E-05 6.1 298.15 3.105 0.1524 SO BUILDHGT SC3 9.45 9.45 12.19 12.19 5.49 5.49 SO BUILDHGT SC3 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDHGT SC3 0.00 0.00 0.00 5.49 5.49 5.49 SO BUILDHGT SC3 5.49 5.49 0.00 0.00 5.49 5.49 5.49 5.49 SO BUILDHGT SC3 0.00 7.47 7.47 7.47 7.47

SO BUILDHGT SC3 7.47 7.47 0.00 5.49 5.49 9.45 22.30 20.93 12.93 SO BUILDWID SC3 1.3.84 24.77 21.43 SO BUILDWID SC3 0.00 0.00 0.00 0.00 0.00 0.00 SO BUILDWID SC3 0.00 29.11 0.00 0.00 28.37 27.46 29.00 SO BUILDWID SC3 29.95 29.99 27.36 24.77 21.43 0.00 0.00 75.18 68.52 SO BUILDWID SC3 0.00 78.00 80.98 81.50 79,55 SO BUILDWID SC3 0.00 28.37 27.46 23.00 SO SRCGROUP ALL SO FINISHED RE STARTING RE GRIDPOLR POLAR STA RE GRIDPOLR POLAR ORIG FUGITIVE RE GRIDPOLR POLAR DIST 500 525 550 575 600 RE GRIDPOLR POLAR DIST 625 650 675 700 725 RE GRIDPOLR POLAR DIST 750 775 800 RE GRIDPOLR POLAR GDIR 36 0 10 RE GRIDPOLR POLAR END RE FINISHED ME STARTING ME INPUTFIL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC" ME ANEMHGHT 10.0000 ME SURFDATA 52075 1981 ME UAIRDATA 91919 1981 ME FINISHED OU STARTING OU PLOTFILE PERIOD ALL "P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 500 grid_81_FORMALDE.GRF" 30 OU FINISHED BEE-Line ISCST3 "BEEST" Version 9.00 Input File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 500 grid_81_FORMALDE.DTA Output File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\PPLA 500 grid_81_FORMALDE.LST Met File - P:\SNF\Polypure\Los Angeles\2003 LA expansion\ADAM & DAD\Modeling\DLA.ASC ***** *** SETUP Finishes Successfully *** *******

```
*** ISCST3 - VERSION 02035 ***
 *** Polypure Inc. - Los Angeles California ***
                                                                 12/10/03
 *** 2003 Modifications ***
                                                                 14:08:24
 * * MODELOPTS :
                                                                 PAGE 1
 CONC
            URBAN FLAT
                             NOCALM
                 *** MODEL SETUP OPTIONS SUMMARY
                                                         ***
 **Intermediate Terrain Processing is Selected
**Model Is Setup For Calculation of Average CONCentration Values.
   -- SCAVENGING/DEPOSITION LOGIC --
**Model Uses NO DRY DEPLETION. DDPLETE = F
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO WET SCAVENGING Data Provided.
**NO GAS DRY DEPOSITION Data Provided.
**Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations
**Model Uses URBAN Dispersion.
**Model Uses User-Specified Options:
           1. Final Plume Rise.
           2. Stack-tip Downwash.
           3. Buoyancy-induced Dispersion.
           4. Not Use Calms Processing Routine.
           5. Not Use Missing Data Processing Routine.
           6. Default Wind Profile Exponents.
           7. Default Vertical Potential Temperature Gradients.
**Model Assumes Receptors on FLAT Terrain.
**Model Assumes No FLAGPOLE Receptor Heights.
**Model Calculates PERIOD Averages Only
**This Run Includes:
                       4 Source(s);
                                        1 Source Group(s); and
                                                                    468
Receptor(s)
**The Model Assumes A Pollutant Type of: FORMALDE
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
         Model Outputs Tables of PERIOD Averages by Receptor
         Model Outputs External File(s) of High Values for Plotting (PLOTFILE
Keyword)
**Misc. Inputs: Anem. Hgt. (m) = 10.00 ; Decay Coef. = 0.000
                                                                         1
Rot. Angle =
                0.0
                Emission Units = GRAMS/SEC
                                                                         .
Emission Rate Unit Factor = 0.10000E+07
                Output Units = MICROGRAMS/M**3
.**Approximate Storage Requirements of Model = 1.2 MB of RAM.
**Input Runstream File:
                               PPLA 500 grid 81 FORMALDE.DTA
**Output Print File:
                               PPLA 500 grid_81_FORMALDE.LST
```

*** ISCST3 - VERSION 02035 ***	
*** Polypure Inc Los Angeles California ***	12/10/03
*** 2003 Modifications ***	14:08:24
**MODELOPTS:	PAGE 11
CONC URBAN FLAT NOCALM	

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF FORMALDE IN MICROGRAMS/M**3 **

GROUP	ID .	AVERAGE	CONC RECE	PTOR (XR, YR, ZELEV, ZFLAG) OF TYPE (JETWORK GRID-ID
	1				a in 1998 (1996
ALL	1ST	HIGHES	r value is	0.01594 AT (390762.50, 3769015.75	2
0.00,	0	.00) GI	P POLAR		
	2ND	HIGHES	r value is	0.01521 AT (390691.09, 3769065.75	2
0.00,	0	.00) GI	P POLAR	w.	8
	3RD	HIGHEST	r value is	0.01474 AT (390750.00, 3768994.00	
0.00,	0	.00) GI	POLAR		S.
	$4 \mathrm{TH}$	HIGHEST	r value is	0.01448 AT (390841.50, 3768979.00	
0.00,	0	.00) GI	POLAR		
	STH	HIGHES'	r VALUE IS	0.01436 AT (390629.47, 3769127.25	3
0.00,	0	.00) GI	P POLAR	12 MA DE DESERVATION ENTREMA	
	6TH	HIGHEST	r value is	0.01403 AT (390675.03, 3769046.50	
D.00,	0	.00) GI	POLAR		
	$7 \mathrm{TH}$	HIGHES'	r value is	0.01368 AT (390737.50, 3768972.50	
0.00,	0	.00) GI	POLAR	energia energia entre antes en contras en contras en energias en energias en energias en energias en energias e	
	STH	HIGHEST	r VALUE IS	0.01342 AT (390832.94, 3768955.50	2
o.oo,	0	.00) GI	P POLAR		
	9TH	HIGHES?	C VALUE IS	0.01325 AT (390610.31, 3769111.25,	r:
0.00,	0	.00) GI	P POLAR		
	10TH	HIGHES'	VALUE IS	0.01300 AT (390658.97, 3769027.50	
0.00,	0	.00) GI	POLAR		

*** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY

```
*** ISCST3 - VERSION 02035 ***

*** Polypure Inc. - Los Angeles California ***

*** 2003 Modifications ***

**MODELOPTs: 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

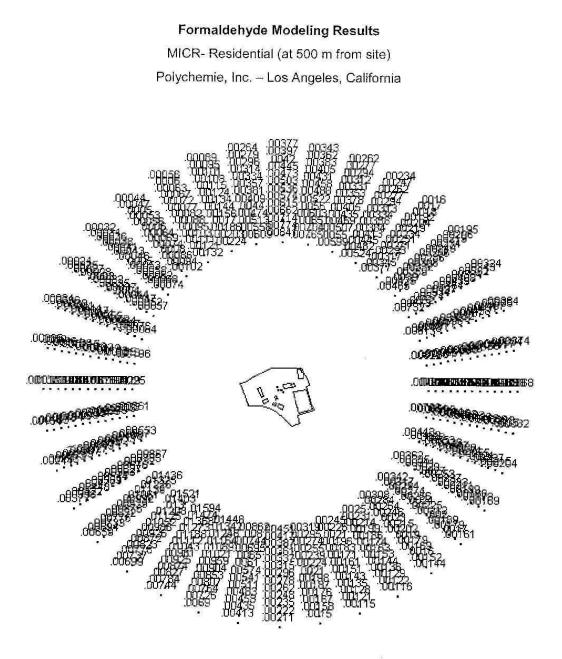
*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03

*** 12/10/03


*** 12/10/03

*** 12/10/0
```

,

_

-

FORMALDEHYDE RESULTS -- Highest concentration = 0.01594 ug/m3