APPENDIX D

HAZARDS RISK ANALYSIS MODELING ASSUMPTIONS AND RESULTS

Consequence modeling was performed for the following ammonia release and natural gas explosion scenarios:

Case 1: The entire contents of one new aqueous ammonia tanks (20,000 gallons) at the VGS site are spilled into a dike area that is five feet high and capable of containing the entire contents of the tank plus 20 percent. The liquid in the dike area then evaporates at a rate estimated from USEPA equations. The storage tank failure was assumed to be caused by an external event or degradation of the equipment. The incremental risk was compared with current facility operations.

Case 2: The entire contents of an aqueous ammonia tanker delivery truck are spilled in a vehicle accident at the VGS site. The entire 5,000 gallons of aqueous ammonia spreads in all directions in an unconfined manner to a depth of one centimeter and evaporates. The incremental risk was compared with current facility operations.

Case 3: An aqueous ammonia truck is improperly connected/disconnected at VGS and releases 200 gallons of aqueous ammonia before the emergency shut-off can be activated. The spill spreads in an unconfined manner to a depth of one centimeter and evaporates. The risk was estimated compared to a zero baseline.

Case 4: The new natural gas connector pipeline for one new CT is ruptured near the main and releases natural gas that forms a cloud and explodes after ten minutes (14,776 pounds of natural gas). The blast impact is estimated.

The purpose of the hazards risk modeling was to estimate the offsite consequences of releases of toxic and flammable materials from equipment installations and modifications at the proposed project sites.

The modeling was based on EPA's RMP Guidance worst-case estimates for toxic releases and explosions. The RMPComp model was used to calculate the size of the impact zones. The EPA endpoint for explosions is the distance from the explosion that is required to reduce the overpressure to one psi. The EPA endpoint for ammonia exposure is the distance from the spill that is required to reduce the concentration to 200 ppm, the ERPG II endpoint for ammonia. The RMPComp program estimates were based on 30 percent aqueous ammonia, which is slightly higher concentration than the 29.5 percent ammonia proposed for this project. The 30 percent concentration is built into RMPComp and was the closest selection available for use.

As of the release of this Final EIR, the aqueous ammonia tanks and the dike areas for the project sites have not yet been designed. However, as a "worst-case" for all ammonia tank release scenarios, the following assumptions were made:

- Ammonia tank dimensions were assumed to be twice as wide as they were high;
- The ammonia tank volume was assumed to be 10 percent larger than the nominal containment volume. (For a tank with 20,000-gallon contents, the tank volume was assumed to be 22,000 gallons);
- All dike areas were assumed to have excess capacity of 20 percent more than the tank contents. (The dike capacity for 20,000-gallon contents was assumed to be 24,000 gallons);
- All dike walls were assumed to be five feet high;
- For unconfined ammonia spills, the liquid was assumed to spread to a thickness of one centimeter in all directions on a flat impervious surface;
- Rural conditions were conservatively assumed to reduce dispersion.

Table D-1 shows the results of the RMPComp model for explosions and spills.

Case	Event	RMP Comp 200 ppm Endpoint (meters)
1	Aqueous Ammonia Tank Failure to Diked Containment (20,000 gallons) at VGS	500
2	Ammonia Truck Spill Unconfined (5,000 gallons) at VGS	2,300
3	Bad Connect/Disconnect Unconfined (200 gallons) at VGS	500
4	Ruptured Pipeline Natural Gas at VGS (10 Minute Cloud Plus Explosion)	300

Table D-1Distance to Endpoint from Center of Upset*

Table D-2Qualitative and Quantitative Estimates of Failures that may Contribute
to Hazardous Releases

Scenario	Likelihood (Qualitative)	Frequency
Tank failure from earthquake	Improbable	The frequency of a maximum probable (6.7 Richter) Verdugo earthquake is one per 50 years. ¹ Approximately one in ten spherical vessels fail for lateral accelerations >0.2g which can be generated in such an earthquake ² (bullets/tanks are less vulnerable and would fail less frequently). The expected tank failure rate in an earthquake would be approximate one per 1,000 years.
Tank failure (catastrophic)	Improbable	The catastrophic tank failure rate ⁴ is approximately one per 100 years. Failures are primarily due to cracks.
Pipe failure from earthquake	Improbable	The event frequency is approximately once per 100 years but the pipe may not rupture ¹ . Assume the pipe failure rate in a maximum probable earthquake is one in ten as for tanks. The number of pipe failures that result in unconfined explosions is estimated to be one in ten (by relating failures and failures plus explosions) for a combined estimate of one per 10,000 years ^{3,4} . Fires would be of higher probability but less than one per rupture. (The combined fire and pipe failure rate is approximately one per 1,000 years to one per 10,000 years).
Pipe failure (catastrophic)	Improbable	The catastrophic pipe failure rate ⁴ is approximately one per 1,000 years. The number of explosions for pipeline failures is estimated to be an average of one per ten failures (by relating failures with failures plus explosions) for a combined one per 10,000 years ^{3,4} .
Truck accident	Improbable/ Remote	Truck accident rates are approximately one per 8.7-million miles ⁵ . Assuming a total of 36 truck deliveries of aqueous ammonia per year of an estimated total of 1,300 miles, the expected number of truck accidents will be about one per 6,700 years. The likelihood of release is one in ten and of a major release one in 40^7 . The expected major release frequency is approximately one per 268,000 years.

Table D-2Qualitative and Quantitative Estimates of Failures that may Contributeto Hazardous Releases

Seconorio	Likelihood	Framing of					
Scenario	(Qualitative)	Frequency					
Truck Connect/	Periodic/	iodic/ Human error rate ⁶ is about one per 2,000 operations. For					
Disconnect	Improbable	tankers per year there are 72 connect/disconnects per year.					
Accident		A bad connect/disconnect would be expected about every 28					
		years. Assume the same release rate as for truck accidents.					
		The likelihood of any connection release (small spill) is one in					
		ten and of a larger (200 gallons) release is one in 40 ⁷ . The					
		approximate larger release rate for connections is about one					
		per 1,100 years.					
Frequent - M	ore than once per yea	ar (0 to 1 years)					
Periodic - O	nce per decade (1 to	10 years)					
Occasional-	During the facility lifet	ime (10 to 100 years)					
Improbable - 10	0 to 10,000 years						
Remote - No	ot likely to occur at all						
1 Magula	and Owen, 2000						
2 AIChE	Chemical Process Q	uantitative Risk Analysis"					
3 F. Lees	, "Loss Prevention in	Process Industries," Vol. 1, 1992					
4 AIChE	Process Equipment I	Reliability Data," 1989					
5 ENSR ²	994 in "Risk of Upse	t Evaluation, Unocal San Francisco Refinery, Reformulated Gasoline Project					
6 T. Kletz	, "An Engineers View	of Human Error," 1985					
7 ENSR 2	994						
8 USDOT	, Federal Railroad Ad	dministration, Accident/Incident Bulletin No. 164, CY 1995, Aug. 1996					

10/25/00

09:55:38

*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***

20,000 gallon spill to a dike with 20% Over Cap (Corrected for open area)

SIMPLE TERRAIN INPUTS:

	SOURCE TYPE = AREA
	EMISSION RATE (G/(S-M**2)) = 2.87000
	SOURCE HEIGHT (M) = .0000
	LENGTH OF LARGER SIDE (M) = 5.5200
	ENGTH OF SMALLER SIDE (M) = 5.5200
	RECEPTOR HEIGHT (M) = .0000
	JRBAN/RURAL OPTION = RURAL
Т	E REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.

THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** STABILITY CLASS 6 ONLY ***

*** ANEMOMETER HEIGHT WIND SPEED OF 1.50 M/S ONLY ***

*** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES

DIST	CONC	U10M	USTK MIX HT	PLUME MAX DIR
-				-

(M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG)

----- ----- ---- ----- -----100. .1823E+07 6 1.5 1.5 10000.0 .00 44. 200. .5743E+06 6 1.5 1.5 10000.0 .00 43. 300. .2906E+06 6 1.5 1.5 10000.0 .00 37. 400. .1787E+06 6 1.5 1.5 10000.0 .00 31. 500. .1225E+06 6 1.5 1.5 10000.0 .00 37. 600. .8987E+05 6 1.5 1.5 10000.0 .00 32. 700. .6920E+05 6 1.5 1.5 10000.0 .00 37. 800. .5591E+05 6 1.5 1.5 10000.0 .00 32.

900. .4633E+05 6 1.5 1.5 10000.0

.00

32.

1000. .3916E+05 6 1.5 1.5 10000.0 .00 44.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 100. M:

100. .1823E+07 6 1.5 1.5 10000.0 .00 44.

*** SCREEN DISCRETE DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES

DIST CONC U10M USTK MIX HT PLUME MAX DIR

(M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG)

----- ----- ---- ----- ----- -----

400.	.1787E+06	6	1.5	1.5 10000.0	.00	31.
450.	.1464E+06	6	1.5	1.5 10000.0	.00	31.
460.	.1411E+06	6	1.5	1.5 10000.0	.00	31.
470.	.1360E+06	6	1.5	1.5 10000.0	.00	41.
465.	.1385E+06	6	1.5	1.5 10000.0	.00	39.
463.	.1395E+06	6	1.5	1.5 10000.0	.00	39.
462.	.1400E+06	6	1.5	1.5 10000.0	.00	31.

700.	.6920E+05	6	1.5	1.5 10000.0	.00	37.
650.	.7846E+05	6	1.5	1.5 10000.0	.00	32.
660.	.7645E+05	6	1.5	1.5 10000.0	.00	37.
670.	.7453E+05	6	1.5	1.5 10000.0	.00	37.
680.	.7268E+05	6	1.5	1.5 10000.0	.00	43.
690.	.7090E+05	6	1.5	1.5 10000.0	.00	44.
691.	.7072E+05	6	1.5	1.5 10000.0	.00	32.
692.	.7055E+05	6	1.5	1.5 10000.0	.00	44.
693.	.7038E+05	6	1.5	1.5 10000.0	.00	44.
694.	.7021E+05	6	1.5	1.5 10000.0	.00	32.
695.	.7004E+05	6	1.5	1.5 10000.0	.00	44.

*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION MAX CONC DIST TO TERRAIN

PROCEDURE (UG/M**3) MAX (M) HT (M)

------ ------

SIMPLE TERRAIN .1823E+07 100. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

10/31/00

11:30:27

*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***

Unconfined 5000 Gallon Spill Corrected for 15.4 Minute Duration

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA EMISSION RATE $(G/(S-M^{*2}))$ = .735000 SOURCE HEIGHT (M) = .0000 LENGTH OF LARGER SIDE (M) = 43.5000 LENGTH OF SMALLER SIDE (M) = 43.5000 RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.

THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** STABILITY CLASS 6 ONLY ***

*** ANEMOMETER HEIGHT WIND SPEED OF 1.50 M/S ONLY ***

*** SCREEN AUTOMATED DISTANCES ***

----- ----- ---- ----- -----

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES

DIST	CONC	U10M	USTK	MIX HT	PLUME	MAX DIR

(M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG)

100.	.9509E+07	6	1.5	1.5 10000.0	.00	45.
200.	.4736E+07	6	1.5	1.5 10000.0	.00	45.
300.	.3042E+07	6	1.5	1.5 10000.0	.00	45.
400.	.2141E+07	6	1.5	1.5 10000.0	.00	44.
500.	.1590E+07	6	1.5	1.5 10000.0	.00	45.
600.	.1229E+07	6	1.5	1.5 10000.0	.00	44.
700.	.9795E+06	6	1.5	1.5 10000.0	.00	45.
800.	.8098E+06	6	1.5	1.5 10000.0	.00	44.
900.	.6827E+06	6	1.5	1.5 10000.0	.00	43.

1000.	.5848E+06	6	1.5	1.5 10000.0	.00	39.
1100.	.5095E+06	6	1.5	1.5 10000.0	.00	45.
1200.	.4490E+06	6	1.5	1.5 10000.0	.00	45.
1300.	.3994E+06	6	1.5	1.5 10000.0	.00	36.
1400.	.3580E+06	6	1.5	1.5 10000.0	.00	41.
1500.	.3232E+06	6	1.5	1.5 10000.0	.00	43.
1600.	.2936E+06	6	1.5	1.5 10000.0	.00	31.
1700.	.2682E+06	6	1.5	1.5 10000.0	.00	31.
1800.	.2462E+06	6	1.5	1.5 10000.0	.00	45.
1900.	.2270E+06	6	1.5	1.5 10000.0	.00	43.
2000.	.2102E+06	6	1.5	1.5 10000.0	.00	45.
2100.	.1961E+06	6	1.5	1.5 10000.0	.00	40.
2200.	.1835E+06	6	1.5	1.5 10000.0	.00	38.
2300.	.1723E+06	6	1.5	1.5 10000.0	.00	36.
2400.	.1621E+06	6	1.5	1.5 10000.0	.00	33.
2500.	.1529E+06	6	1.5	1.5 10000.0	.00	32.
2600.	.1446E+06	6	1.5	1.5 10000.0	.00	31.
2700.	.1370E+06	6	1.5	1.5 10000.0	.00	32.
2800.	.1301E+06	6	1.5	1.5 10000.0	.00	36.
2900.	.1237E+06	6	1.5	1.5 10000.0	.00	37.
3000.	.1179E+06	6	1.5	1.5 10000.0	.00	41.
3500.	.9565E+05	6	1.5	1.5 10000.0	.00	32.

4000. .7981E+05 6 1.5 1.5 10000.0 .00 31.

4500. .6804E+05 6 1.5 1.5 10000.0 .00 40.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 100. M:

100. .9509E+07 6 1.5 1.5 10000.0 .00 45.

*** SCREEN DISCRETE DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES

DIST CONC U10M USTK MIX HT PLUME MAX DIR

(M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG)

----- ----- ---- ----- ----- -----

 2600.
 .1446E+06
 6
 1.5
 1.5 10000.0
 .00
 31.

 2610.
 .1438E+06
 6
 1.5
 1.5 10000.0
 .00
 32.

 2620.
 .1430E+06
 6
 1.5
 1.5 10000.0
 .00
 32.

 2630.
 .1423E+06
 6
 1.5
 1.5 10000.0
 .00
 32.

 2640.
 .1415E+06
 6
 1.5
 1.5 10000.0
 .00
 32.

 2650.
 .1407E+06
 6
 1.5
 1.5 10000.0
 .00
 32.

 2660.
 .1400E+06
 6
 1.5
 1.5
 10000.0
 .00
 32.

 4400.
 .7014E+05
 6
 1.5
 1.5
 10000.0
 .00
 32.

 4410.
 .6993E+05
 6
 1.5
 1.5
 10000.0
 .00
 35.

*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION MAX CONC DIST TO TERRAIN

PROCEDURE (UG/M**3) MAX (M) HT (M)

----- -----

SIMPLE TERRAIN .9509E+07 100. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

10/31/00

11:48:43

*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***

Unconfined Spill of 200 Gallons Corrected for 15.4 Minutes Duration

SIMPLE TERRAIN INPUTS:

	SOURCE TYPE =	ļ	REA				
	EMISSION RATE (G/(S-M**2)) =	.735	5000			
	SOURCE HEIGHT (M)	=	.0000)			
	LENGTH OF LARGER SIDE	(M)	= 8	3.7000			
	LENGTH OF SMALLER SIDE	(M)	=	8.7000			
	RECEPTOR HEIGHT (M)	=	.00	00			
	URBAN/RURAL OPTION	=	RU	IRAL			
Т	THE REGULATORY (DEFAUL	Г) MI	XING I	HEIGHT O	PTION W	AS SELEC	TED.

THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** STABILITY CLASS 6 ONLY ***

*** ANEMOMETER HEIGHT WIND SPEED OF 1.50 M/S ONLY ***

*** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES

DIST CONC U10M USTK MIX HT PLUME MAX DIR

(M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG)

----- ----- ---- ---- ----- -----

100. .1056E+07 6 1.5 1.5 10000.0 .00 45.

200. .3548E+06 6 1.5 1.5 10000.0 .00 45.

300. .1822E+06 6 1.5 1.5 10000.0 .00 31.

400. .1127E+06 6 1.5 1.5 10000.0 .00 35.

500. .7747E+05 6 1.5 1.5 10000.0 .00 40.

600. .5696E+05 6 1.5 1.5 10000.0 .00 31.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 100. M:

100. .1056E+07 6 1.5 1.5 10000.0 .00 45.

*** SCREEN DISCRETE DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES

DIST CONC U10M USTK MIX HT PLUME MAX DIR

(M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG)

----- ----- ---- ----- ----- -----

350. .1410E+06 6 1.5 1.5 10000.0 .00 44.

- 351. .1403E+06 6 1.5 1.5 10000.0 .00 41.
- 352. .1396E+06 6 1.5 1.5 10000.0 .00 41.

530. .7022E+05 6 1.5 1.5 10000.0 .00 45.

531. .7000E+05 6 1.5 1.5 10000.0 .00 45.

532. .6978E+05 6 1.5 1.5 10000.0 .00 45.

*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION MAX CONC DIST TO TERRAIN

PROCEDURE (UG/M**3) MAX (M) HT (M)

------ ------

SIMPLE TERRAIN .1056E+07 100. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Results of Consequence Analysis

Chemical: Methane

CAS #: 74-82-8

Category: Flammable Gas

Scenario: Worst-case

Quantity Released: 14776 pounds

Release Type: Vapor Cloud Explosion

Estimated Distance to 1 psi overpressure: .2 miles (.3 kilometers)

-----Assumptions About This Scenario------

Wind Speed: 1.5 meters/second (3.4 miles/hour)

Stability Class: F

Air Temperature: 77 degrees F (25 degrees C)

Results of Consequence Analysis

Chemical: Ammonia (water solution) 30%

CAS #: 7664-41-7

Category: Toxic Liquid

Scenario: Worst-case

Quantity Released: 20000 gallons

Liquid Temperature: 77 F

Mitigation Measures:

Diked area: 642 square feet

Dike height: 5 feet

Release Rate to Outside Air: 23.4 pounds per minute

Topography: Rural surroundings (terrain generally flat and unobstructed)

Toxic Endpoint: 0.14 mg/L; basis: ERPG-2

Estimated Distance to Toxic Endpoint: 0.3 miles (0.5 kilometers)

-----Assumptions About This Scenario------

Wind Speed: 1.5 meters/second (3.4 miles/hour)

Stability Class: F

Air Temperature: 77 degrees F (25 degrees C)

Results of Consequence Analysis

Chemical: Ammonia (water solution) 30%

CAS #: 7664-41-7

Category: Toxic Liquid

Scenario: Worst-case

Quantity Released: 5000 gallons

Liquid Temperature: 77 F

Mitigation Measures: NONE

Release Rate to Outside Air: 737 pounds per minute

Topography: Rural surroundings (terrain generally flat and unobstructed)

Toxic Endpoint: 0.14 mg/L; basis: ERPG-2

Estimated Distance to Toxic Endpoint: 1.4 miles (2.3 kilometers)

------Assumptions About This Scenario------

Wind Speed: 1.5 meters/second (3.4 miles/hour)

Stability Class: F

Air Temperature: 77 degrees F (25 degrees C)

Results of Consequence Analysis

Chemical: Ammonia (water solution) 30%

CAS #: 7664-41-7

Category: Toxic Liquid

Scenario: Worst-case

Quantity Released: 200 gallons

Liquid Temperature: 77 F

Mitigation Measures: NONE

Release Rate to Outside Air: 29.5 pounds per minute

Topography: Rural surroundings (terrain generally flat and unobstructed)

Toxic Endpoint: 0.14 mg/L; basis: ERPG-2

Estimated Distance to Toxic Endpoint: 0.3 miles (0.5 kilometers)

-----Assumptions About This Scenario------

Wind Speed: 1.5 meters/second (3.4 miles/hour)

Stability Class: F

Air Temperature: 77 degrees F (25 degrees C)

DWP Calculations (10/24/00), Toxic Spill and Pipeline Explosion

Input	Chemical	Hc (joules/kg)	Hv (joules/kg)	Cp (joules/kg-K)	Tb (K)				
1	l Diesel	4.81E+07	275218	1609	447.0				
2	2 Ethanol	2.97E+07	866265	2407	351.4				
3	3 Gasoline	4.78E+07	300513	1626	398.7				
4	1 Pentane	4.86E+07	356415	1629	309.0				
5	5 MTBE	3.87E+07	320237	2098	327.0				
e	6 n-Nonane	4.77E+07	287192	1611	423.5				
7	7 Nonenes	4.71E+07	287285	1565	419.8				
8	3 Butane	4.90E+07	384400						
ç	Hydrogen	1.30E+08	450189						
10) Propylene	4.88E+07	436497						
11	Methane	5.54E+07	508713						
	1,3,4,6,8,11 Petroleum Refining, J. Gary and G Handwerk, Marcel Dekker, Inc, 1975								
	2,10 Perry's Cher	nical Engineering Ha	andbook						
	5 Conversation w	ith Dennis Feist, Equ	uilon/Shell						
	7 ARCO Table 10	21.3							
	9 Standard Hand	book for ME, Marks							
							Square	Square	
Confined Spill	Input	Chemical	Gallons	Cu ft + 20%	Area (sq ft)	Area (sq m)	L (ft)	L (m)	
Tank Vol		Aqueous NH3	30,000	4812.8	962.6	89.5		9.5	
							31.0		
Pool Depth (ft)	5								
Confined Spill	Input	Chemical	Gallons	Cu ft + 20%	Area (sɑ ft)	Area (sɑ m)	L (ft)	L (m)	
Tank Vol		Aqueous NH3	20.000	3208.6	641.7	59.6	25.3	7.7	
Pool Depth (ft)	5				• • • • •				
(Chemical	Gallons	lbs/gal	Pounds	ka	Lbs NH3			
	Aqueous NH3	20000	7.37	1.47E+05	6.70E+04	4.42E+04			
	Aqueous NH3	30000	7.37	2.21E+05	1.01E+05	6.63E+04			
	Aqueous NH3	5000	7.37	3.69E+04	1.68E+04	1.11E+04			
	Aqueous NH3	200	7.37	1.47E+03	6.70E+02	4.42E+02			

DWP Calculations (10/24/00), Toxic Spill, Pipeline Explosion

January 2002

DWP Calculations (10/24/00), Toxic Spill, Pipeline Explosion										
Input	Chemical	Hc (joules/kg)	Hv (joules/kg)	Cp (joules/kg-K)	Tb (K)					
	Aqueous NH3	28	7.37	2.06E+02	9.38E+01	6.19E+01				
	Aqueous NH3	0	7.37	0.00E+00	0.00E+00	0.00E+00				
Unconfined Spills	s 1 cm depth (0.39	inches or 0.0328	s feet)			Circle	Circle	Square		
		Gallons	Cu ft	Area (sq ft)	Area (sq m)	D (ft)	D (m)	L (m)		
	Tank Truck	5000	668.4	20379.5	1889.6	161.1	49.1	43.47		
	Disconnect	200	26.7	815.2	75.6	32.2	9.8	8.69		
	Pipeline Rupture	28	3.7	114.1	10.6	12.1	3.7	3.25		
***Dike Area=	20000	642	sa ft	59.67	sam					
Dinto / li ou=	20000	0.12	04 K	00.01	oqm					
	EPA 10 Min	ute Average for	30% Ammonia							
			1.5 m/s	3.0 m/s			1.5 m/3	3.0 m/s		Dike
Temp	29.5% in mm	EPA in mm	Qr (Ibs/min)	Qr (Ibs/min)	Temp	T (C)	gm/s/m**2	gm/s/m**2	T (C)	gm/sec
77.00	703.44	332.00	22.67	NA	77.00	25.00	2.87	NA	25.00	171.41
77.00	703.44	248.00	NA	29.17	77.00	25.00	NA	3.70	25.00	220.54
		Time (min)	1950.31							
***Dike Area=	30000	962.6	sq ft	89.46	sq m					
	EPA 10 Min	ute Average for	30% Ammonia							
			1.5 m/s	3.0 m/s			1.5 m/3	3.0 m/s		Dike
Temp	29.5% in mm	EPA in mm	Qr (Ibs/min)	Qr (Ibs/min)	Temp	T (C)	gm/s/m**2	gm/s/m**2	T (C)	gm/sec
77.00	703.44	332.00	34.00	NA	77.00	25.00	2.87	NA	25.00	257.01
77.00	703.44	248.00	NA	43.74	77.00	25.00	NA	3.70	25.00	330.67
		Time (min)	1951.12							
Truck Area	5000	20380	sq ft	1894.05	sq m					
	EPA 10 Min	ute Average for	30% Ammonia							

Input	Chemical	Hc (joules/kg)	Hv (joules/kg)	Cp (joules/kg-K)	Tb (K)						
			1.5 m/s	3.0 m/s			1.5 m/3	3.0 m/s		Pool	
Temp	29.5% in mm	EPA in mm	Qr (Ibs/min)	Qr (Ibs/min)	Temp	T (C)	gm/s/m**2	gm/s/m**2	T (C)	gm/sec	
77	703.44	332.00	719.76	NA	77.00	25.00	2.87	NA	25.00	5441.35	
77	703.44	248.00	NA	926.05	77.00	25.00	NA	3.70	25.00	7000.90	
		Time (min)	15.36								
Leak Area	200	815.2	sq ft	75.76	sq m						
	EPA 10 Mir	nute Average for	30% Ammonia								
			1.5 m/s	3.0 m/s			1.5 m/3	3.0 m/s		Puddle	
Temp	29.5% in mm	EPA in mm	Qr (Ibs/min)	Qr (Ibs/min)	Temp	T (C)	gm/s/m**2	gm/s/m**2	T (C)	gm/sec	
77	703.44	332.00	28.79	NA	77.00	25.00	2.87	NA	25.00	217.65	
77	703.44	248.00	NA	37.04	77.00	25.00	NA	3.70	25.00	280.04	
		Time (min)	15.36								
Pipeline Leak	28	114.1	sq ft	10.60	sq m						
	EPA 10 Mir	nute Average for	30% Ammonia								
			1.5 m/s	3.0 m/s			1.5 m/3	3.0 m/s		Puddle	
Temp	29.5% in mm	EPA in mm	Qr (Ibs/min)	Qr (Ibs/min)	Temp	T (C)	gm/s/m**2	gm/s/m**2	T (C)	gm/sec	
77	703.44	332.00	4.03	NA	77.00	25.00	2.87	NA	25.00	30.46	
77	703.44	248.00	NA	5.18	77.00	25.00	NA	3.70	25.00	39.20	
		Time (min)	15.36								
Blast distance to 1 psi		Wt Pounds	Chemical	Wt (kg)	Hc (joules/kg)	x (m)					
	HGS	73879	Methane	3.36E+04	5.54E+07	580.0					
	VGS	14776	Methane	6.72E+03	5.54E+07	339.2					

DWP Calculations (10/24/00), Toxic Spill, Pipeline Explosion